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The ground energy and the ground state

» Given a Hamiltonian
H =" M [te) (¥ € C**% find its smallest
eigenvalue )\ (ground energy), and the
corresponding eigenstate [1y) (ground state).
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The ground energy and the ground state

» Given a Hamiltonian
H =" M [te) (¥ € C**% find its smallest
eigenvalue )\ (ground energy), and the
corresponding eigenstate [1y) (ground state).

» Without additional information, the task of finding
the ground energy of a k-local Hamiltonian is
QMA-complete.
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The assumptions

(i) We assume we are given a circuit U; to prepare an
initial state |¢g) s.t. | (¢o|wo) | > 7.
(i) For ground state preparation only: we assume

there is a spectral gap at least A between \q and
Al

Near-optimal
ground state
preparation

The ground energy
and the ground
state

3/21



The assumptions

(i) We assume we are given a circuit U; to prepare an
initial state |¢g) s.t. | (¢o|wo) | > 7.
(i) For ground state preparation only: we assume

there is a spectral gap at least A between \q and
Al

Why these assumptions:

(1) Quantum chemistry setting: Hartree-Fock yields
reasonable overlap; empirical knowledge of the
spectral gap.
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Near-optimal

The assumptions pefE

preparation

The ground energy
(i) We assume we are given a circuit U; to prepare an and the ground

initial state |¢g) s.t. | (¢o|wo) | > 7.

(i) For ground state preparation only: we assume
there is a spectral gap at least A between \q and
Al

Why these assumptions:

(1) Quantum chemistry setting: Hartree-Fock yields
reasonable overlap; empirical knowledge of the
spectral gap.

(2) Uy can also be constructed using variational
algorithms (VQE, QAOA) and adiabatic evolution.
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» Oracles: U;|0") = |¢pp), e "™H.
» Query complexity (ground energy):
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» Oracles: U;|0") = |¢), e 7H.
» Query complexity (ground energy):
> Allowed error e; _
» QPE (high confidence! 2): O(e~1y~2) queries
to e~ and O(y~2) queries to U;
> GTC 2019: O(c3/2y~1) queries to e "™ and
O(e~ 1241 queries to U;.
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Previous works S
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» Abrams and Lloyd, 1999, Phys. Rev. Lett.
» Poulin and Wocjan, 2009, Phys. Rev. Lett.
» Ge, Tura, and Cirac, 2019, J. Math. Phys. Frevious vierke

» Oracles: U;|0") = |¢), e 7H.
» Query complexity (ground energy):
> Allowed error ¢;
> QPE (high confidence! 2): O(e~!y~2) queries
to e~ and O(y~2) queries to U;
> GTC 2019: O(c3/2y~1) queries to e "™ and
O(e1/2y~1) queries to U7.
» Ground state: Estimate the ground energy to
precision A /4 and prepare the ground state.

Poulin and Wocjan, 2009, Phys. Rev. Lett.
2Knill, Ortiz, and Somma, 2007, Phys. Rev. A
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» Assumption: | (¢o|1o) | > v for some known
v > 0.
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error € with probability 1 — 4.
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The main result e

preparation

Ground energy (Theorem 8)

» Oracles: a unitary U; such that U; |0™) = |¢o),
another unitary Uy that “block-encodes” H.

The results

» Assumption: | (¢o|1o) | > v for some known
v > 0.

» Goal: estimate ground energy to within additive
error € with probability 1 — 4.

> Query complexity: O (v e !log (971)) queries
to Uy and O (y log (1) log (9~1)) queries to U;.

» Gate complexity: roughly linear w.r.t. query
complexity.
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Compare with previous works

Uy Ur
QPE O(ey?) | O(v)
GTC 2019 | O(e7324~1) | O(e71/2y71)
This work | O(e 'y O™

Table: Query complexity for ground energy estimation.
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Compare with previous works irsond st

preparation

Un Ur
QPE O(A™1y72) O(v?)
GTC 2019 | O(A=32y~1) | O(A~1/2471)
This work | O(A71y71) O(y™h

The results

Table: Query complexity for ground state preparation.

» Get the best of both worlds!
» Near-optimal dependence on A and .
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Block-encoding o mise
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» Encoding a matrix A in a unitary:

» Can also write

Ulom)lg) = 10m) (A/a)|¢) + | L) + error.

» Many matrices of practical interest can be
effificently block-encoded (k-local, sparse,
second-quantized fermionic Hamiltonians, etc.)

» First proposed in (Low and Chuang, 2019,
“Hamiltonian simulation by qubitization”) (standard
form)
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» Quantum signal processing (QSP) (Low and
Chuang, 2017), quantum singular value
transformation (QSVT) (Gilyén, Su, Low, and
Wiebe, 2019).
Ground state

> FOF a Hel’mltlan A, preparation
through filtering
U, — (A(a ) QSVT (p(A./a) )

» pis a degree-d polynomial, and [p(z)| < 1/2 for all
z € [-1,1].
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Quantum singular value transformation Ground st

preparation

» Quantum signal processing (QSP) (Low and
Chuang, 2017), quantum singular value
transformation (QSVT) (Gilyén, Su, Low, and
Wiebe, 2019).

» For a Hermitian A, e
U, — (A(a ) QSVT (p(A./a) )

through filtering
» pis a degree-d polynomial, and [p(z)| < 1/2 for all
z € [-1,1].
» Number of queries to Uy is d.
» Can prepare state p(A/a) |¢) (with amplitude

amplification) and estimate ||p(A/a) |¢) || (with
amplitude estimation).
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Equivalence between query models sround sae

preparation

Uy block-encodes H, U = e~ 71,

Hamiltonian
simulation

> Going from U = e ™ qopna state
to H: easy to CONSLruct throuen fikering
A a block-encoding of
U U (Ut =U)/2;
H > Apply QSVT to
i(UT—U)/2 to get
v arcsin(i(UT — U)/2) =
H. (GSLW full version)
H = arcsin(i(Ut — U)/2)
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Ground state preparation through o
eigenstate filtering

» We have upper bound u such that
M <p—A22<pu+A/2<\.
Ground state

» Idea: use an approximate projection operator to
filter out the unwanted eigenstates. hroagh fiering

» Filter polynomial p(z) satisfies

and 0 < p(z) <1 forz € [-1,1].

» Can find polynomial of degree d = O(6 " log(e'~1))
(Low and Chuang, 2017) (Eremenko-Yuditskii,
2007).
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Eigenstate filtering
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Figure: Applying QSVT with f(z) = p((z — u)/2) to H.
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» p((H — u)/2) approximates the projection operator
[%0) (Yol;

Ground state

> p((H — p)/2) |¢o) is close to |1y); preparation
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» In order to get e-close to |¢)y) we need

O(y LA log(e™)) queries to Uy and O(y 1)
queries to U; (with amplitude amplification)
(Theorem 6);
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Near-optimal

Eigenstate filtering o mise

preparation

» p((H — u)/2) approximates the projection operator

[tho) (tol;
. Ground lstate
> p((H — p)/2)[¢o) is close to [th); through fitering

» In order to get e-close to |¢)y) we need
O(yv A~ log(e™")) queries to Uy and O(y™1)
queries to U; (with amplitude amplification)

(Theorem 6);

» Requires knowledge of 1 and A.
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Ground energy estimation

The decision problem: a < )\j < b.

(i) When a < M\ < %a + %b, output 0;

(i) When 2a + b < X\g < a + 2b, output 0 or 1;
(iii) When za+ 2b < X\g < b, output 1.

Output O Output 1

Output either
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Ground energy estimation

The decision problem: a < )\j < b.
(i) When a < Ay < 2a + 1b, output 0;

(i) When %a + 3b < Ao < $a+ 2b, output 0 or 1;

(iii) When za + gb < Ao < b, output 1.

If the outputis O

A

\
|

|
If the output is 1
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» If the decision problem can be solved, then we can
start with some a < )y < b, and repeatedly solve

the decision problem:
(1) If the output is 0, it indicates a < Ao < %a + %b.

We update b < %a + %b;
(2) If the output is 1, it indicates 2a + 1b < g < b. Ground enerey

We update a + %a + %b.

» Always guaranteed: a < Ay < b,
(b - a)new = (2/3) (b — a)old.
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Ground energy estimation ground state

preparation

» If the decision problem can be solved, then we can
start with some a < )y < b, and repeatedly solve
the decision problem:
(1) If the output is 0, it indicates a < Ao < %a + %b.
We update b < %a + %b;
(2) If the output is 1, it indicates %a + %b <X <b. Ground energy
We update a + %a + %b.

» Always guaranteed: a < Ay < b,
(b - a)new = (2/3) (b — a)old.

» Solve the decision problem through eigenstate
filtering.
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T |
p((x —u)/2)
x  eigenvalues

1.0

0.8
0.6

Ground energy
estimation
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Solving the decision problem (ii)
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Solving the decision problem (iii)
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0.6
0.4
0.2
0.0

Ao > ga+3b = |p((H —p)/2) o) || < ¢
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Solving the decision problem

» Only need to distinguish between

Ip((H = 1)/2) [¢0) || = (1 =€) and
Ip((H — 1) /2) [¢o) || < €.
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Solving the decision problem

» Only need to distinguish between

Ip((H = 1)/2) [¢0) || = (1 =€) and
Ip((H — 1) /2) [¢o) || < €.

» Can use amplitude estimation to do so with
overhead O(y71).
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Near-optimal

Solving the decision problem groun sae

preparation

» Only need to distinguish between

Ip((H = 1)/2) [¢0) || = (1 =€) and
Ip((H — 1) /2) [¢o) || < €.

Ground energy

» Can use amplitude estimation to do so with Sty
overhead O(~71).

» Error probability can be exponentially suppressed
using majority voting (Chernoff bound).
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The query complexity

» Each search step uses O(~y~!) queries to Uy and
O(67 1) queries to Uy;
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The query complexity i

preparation

» Each search step uses O(~y~!) queries to Uy and
O(67 1) queries to Uy;

e
» There are (1’)(10g( ")) steps, and it
5_ 37327337"'7€v

» Total number of queries to U is O(y~!) and

number of queries to Uy is O(e 1y71).

21/27
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Ground state preparation wround state

preparation

» We want to prepare the ground state without
knowing 1 such that
M <p—A2<p+A2<)\.

» Only need a weaker assumption A\ — A\g > A;

> Also | (¢o|to) | = v;

» First estimate the ground energy to precision A/4 Cround <tore
to get a )\/, let n= )\6 -+ A/Q, this 1 satisfies preparation

Mo < p—AJA< p+AJA< AL

Then we apply eigenstate filtering.

> O(y A 'log(e!)) queries to Uy and O(y71)
queries to Uj.
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The unstructured search problem sround stte

preparation

» The unstructure search problem: among n-bit
strings, given oracle U,, such that

Uw]x>:{‘x>’ x #w

—‘£C>, r=w,

find w.

» Cannot be solved with o(v/N) queries to U, Lower bounds
(BBBV Theorem).

» This is a ground state preparation problem with
Hamiltonian U,,,.
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Lower bound on the overlap dependence ground stote

preparation

» Welet Uy = H =U,;
[¢o) = |u) = Uy [0"), Uy = H®™;
» y=1/vVN, A=2.

v

» Suppose there exists an algorithm that, given
A = Q(1), prepares the ground state with o(y™!)
queries to Uy.

Lower bounds
» Then this algorithm solves the unstructured search
problem with o(v/ V) queries to Uy = U,

» Contradiction!
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Summary of results round tte

preparation

» Preparation of the ground state with knowledge of
1t through eigenstate filtering;

» Ground energy estimation through repeated solving
a decision problem;

» Ground state preparation with near-optimal
dependence on the overlap and the spectral gap.

Summary of results
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