

Near-optimal ground state preparation

Yu Tong

Department of Mathematics, University of California, Berkeley

Joint work with Lin Lin (UC Berkeley, LBNL)

QIP 2021

arXiv:2002.12508

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

The ground energy and the ground state

Near-optimal
ground state
preparation

- ▶ Given a Hamiltonian $H = \sum_k \lambda_k |\psi_k\rangle \langle \psi_k| \in \mathbb{C}^{2^n \times 2^n}$, find its smallest eigenvalue λ_0 (**ground energy**), and the corresponding eigenstate $|\psi_0\rangle$ (**ground state**).

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

The ground energy and the ground state

Near-optimal
ground state
preparation

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

- ▶ Given a Hamiltonian $H = \sum_k \lambda_k |\psi_k\rangle \langle \psi_k| \in \mathbb{C}^{2^n \times 2^n}$, find its smallest eigenvalue λ_0 (**ground energy**), and the corresponding eigenstate $|\psi_0\rangle$ (**ground state**).
- ▶ Without additional information, the task of finding the ground energy of a k -local Hamiltonian is QMA-complete.

The assumptions

Near-optimal
ground state
preparation

- (i) We assume we are given a circuit U_I to prepare an initial state $|\phi_0\rangle$ s.t. $|\langle\phi_0|\psi_0\rangle| \geq \gamma$.
- (ii) **For ground state preparation only:** we assume there is a spectral gap at least Δ between λ_0 and λ_1 .

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

The assumptions

- (i) We assume we are given a circuit U_I to prepare an initial state $|\phi_0\rangle$ s.t. $|\langle\phi_0|\psi_0\rangle| \geq \gamma$.
- (ii) **For ground state preparation only:** we assume there is a spectral gap at least Δ between λ_0 and λ_1 .

Why these assumptions:

- (1) Quantum chemistry setting: Hartree-Fock yields reasonable overlap; empirical knowledge of the spectral gap.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

The assumptions

Near-optimal
ground state
preparation

- (i) We assume we are given a circuit U_I to prepare an initial state $|\phi_0\rangle$ s.t. $|\langle\phi_0|\psi_0\rangle| \geq \gamma$.
- (ii) **For ground state preparation only:** we assume there is a spectral gap at least Δ between λ_0 and λ_1 .

Why these assumptions:

- (1) Quantum chemistry setting: Hartree-Fock yields reasonable overlap; empirical knowledge of the spectral gap.
- (2) U_I can also be constructed using variational algorithms (VQE, QAOA) and adiabatic evolution.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Previous works

- ▶ Abrams and Lloyd, 1999, Phys. Rev. Lett.
- ▶ Poulin and Wocjan, 2009, Phys. Rev. Lett.
- ▶ Ge, Tura, and Cirac, 2019, J. Math. Phys.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Previous works

- ▶ Abrams and Lloyd, 1999, Phys. Rev. Lett.
- ▶ Poulin and Wocjan, 2009, Phys. Rev. Lett.
- ▶ Ge, Tura, and Cirac, 2019, J. Math. Phys.
- ▶ **Oracles:** $U_I |0^n\rangle = |\phi_0\rangle, e^{-i\tau H}.$

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Previous works

Near-optimal
ground state
preparation

- ▶ Abrams and Lloyd, 1999, Phys. Rev. Lett.
- ▶ Poulin and Wocjan, 2009, Phys. Rev. Lett.
- ▶ Ge, Tura, and Cirac, 2019, J. Math. Phys.
- ▶ **Oracles:** $U_I |0^n\rangle = |\phi_0\rangle, e^{-i\tau H}.$

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Previous works

- ▶ Abrams and Lloyd, 1999, Phys. Rev. Lett.
- ▶ Poulin and Wocjan, 2009, Phys. Rev. Lett.
- ▶ Ge, Tura, and Cirac, 2019, J. Math. Phys.
- ▶ **Oracles:** $U_I |0^n\rangle = |\phi_0\rangle, e^{-i\tau H}.$
- ▶ **Query complexity (ground energy):**
 - ▶ Allowed error ϵ ;
 - ▶ **QPE (high confidence)**^{1 2}: $\tilde{\mathcal{O}}(\epsilon^{-1}\gamma^{-2})$ queries to $e^{-i\tau H}$ and $\tilde{\mathcal{O}}(\gamma^{-2})$ queries to U_I ;

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

¹Poulin and Wocjan, 2009, Phys. Rev. Lett.

²Knill, Ortiz, and Somma, 2007, Phys. Rev. A

Previous works

- ▶ Abrams and Lloyd, 1999, Phys. Rev. Lett.
- ▶ Poulin and Wocjan, 2009, Phys. Rev. Lett.
- ▶ Ge, Tura, and Cirac, 2019, J. Math. Phys.
- ▶ **Oracles:** $U_I |0^n\rangle = |\phi_0\rangle, e^{-i\tau H}.$
- ▶ **Query complexity (ground energy):**
 - ▶ Allowed error ϵ ;
 - ▶ **QPE (high confidence)**^{1 2}: $\tilde{\mathcal{O}}(\epsilon^{-1}\gamma^{-2})$ queries to $e^{-i\tau H}$ and $\tilde{\mathcal{O}}(\gamma^{-2})$ queries to U_I ;
 - ▶ **GTC 2019**: $\tilde{\mathcal{O}}(\epsilon^{-3/2}\gamma^{-1})$ queries to $e^{-i\tau H}$ and $\tilde{\mathcal{O}}(\epsilon^{-1/2}\gamma^{-1})$ queries to U_I .

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

¹Poulin and Wocjan, 2009, Phys. Rev. Lett.

²Knill, Ortiz, and Somma, 2007, Phys. Rev. A

Previous works

- ▶ Abrams and Lloyd, 1999, Phys. Rev. Lett.
- ▶ Poulin and Wocjan, 2009, Phys. Rev. Lett.
- ▶ Ge, Tura, and Cirac, 2019, J. Math. Phys.
- ▶ **Oracles:** $U_I |0^n\rangle = |\phi_0\rangle, e^{-i\tau H}.$
- ▶ **Query complexity (ground energy):**
 - ▶ Allowed error ϵ ;
 - ▶ **QPE (high confidence)**^{1 2}: $\tilde{\mathcal{O}}(\epsilon^{-1}\gamma^{-2})$ queries to $e^{-i\tau H}$ and $\tilde{\mathcal{O}}(\gamma^{-2})$ queries to U_I ;
 - ▶ **GTC 2019**: $\tilde{\mathcal{O}}(\epsilon^{-3/2}\gamma^{-1})$ queries to $e^{-i\tau H}$ and $\tilde{\mathcal{O}}(\epsilon^{-1/2}\gamma^{-1})$ queries to U_I .
- ▶ **Ground state:** Estimate the ground energy to precision $\Delta/4$ and prepare the ground state.

The ground energy
and the ground
state

Previous works

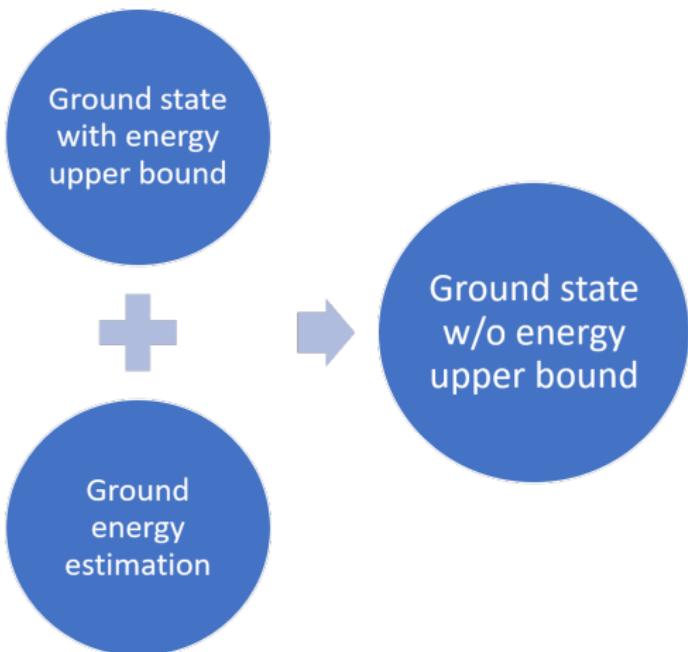
The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds


Summary of results

¹Poulin and Wocjan, 2009, Phys. Rev. Lett.

²Knill, Ortiz, and Somma, 2007, Phys. Rev. A

Outline of our results

Near-optimal
ground state
preparation

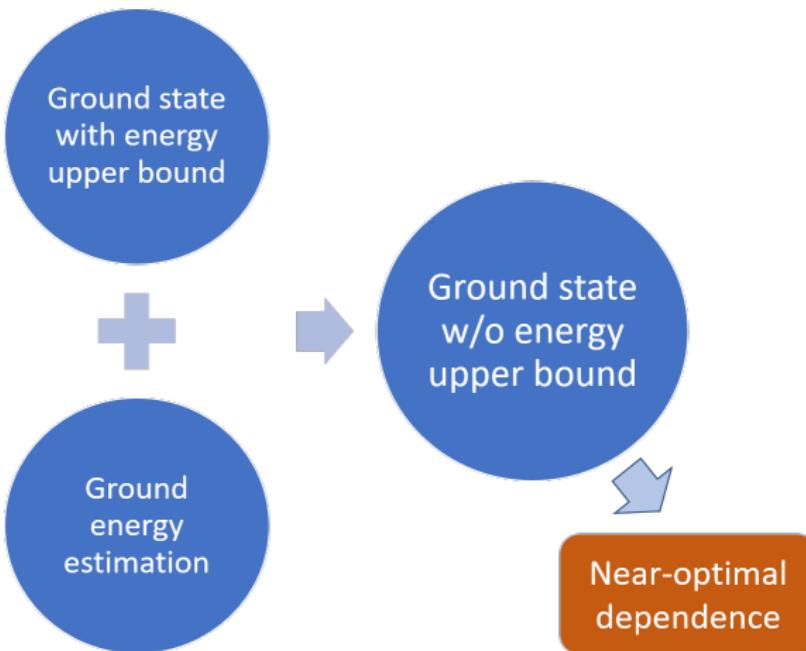
The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation


Ground state
preparation

Lower bounds

Summary of results

Outline of our results

Near-optimal ground state preparation

The ground energy and the ground state

Previous works

The results

Ground state preparation through filtering

Ground energy estimation

Ground state preparation

Lower bounds

Summary of results

Ground energy (Theorem 8)

- ▶ **Oracles:** a unitary U_I such that $U_I |0^n\rangle = |\phi_0\rangle$, another unitary U_H that “block-encodes” H .
- ▶ **Assumption:** $|\langle \phi_0 | \psi_0 \rangle| \geq \gamma$ for some known $\gamma > 0$.
- ▶ **Goal:** estimate ground energy to within additive error ϵ with probability $1 - \vartheta$.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

The main result

Near-optimal
ground state
preparation

Ground energy (Theorem 8)

- ▶ **Oracles:** a unitary U_I such that $U_I |0^n\rangle = |\phi_0\rangle$, another unitary U_H that “block-encodes” H .
- ▶ **Assumption:** $|\langle\phi_0|\psi_0\rangle| \geq \gamma$ for some known $\gamma > 0$.
- ▶ **Goal:** estimate ground energy to within additive error ϵ with probability $1 - \vartheta$.
- ▶ **Query complexity:** $\tilde{\mathcal{O}}(\gamma^{-1}\epsilon^{-1}\log(\vartheta^{-1}))$ queries to U_H and $\tilde{\mathcal{O}}(\gamma^{-1}\log(\epsilon^{-1})\log(\vartheta^{-1}))$ queries to U_I .

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Ground energy (Theorem 8)

- ▶ **Oracles:** a unitary U_I such that $U_I |0^n\rangle = |\phi_0\rangle$, another unitary U_H that “block-encodes” H .
- ▶ **Assumption:** $|\langle\phi_0|\psi_0\rangle| \geq \gamma$ for some known $\gamma > 0$.
- ▶ **Goal:** estimate ground energy to within additive error ϵ with probability $1 - \vartheta$.
- ▶ **Query complexity:** $\tilde{\mathcal{O}}(\gamma^{-1}\epsilon^{-1}\log(\vartheta^{-1}))$ queries to U_H and $\tilde{\mathcal{O}}(\gamma^{-1}\log(\epsilon^{-1})\log(\vartheta^{-1}))$ queries to U_I .
- ▶ **Gate complexity:** roughly linear w.r.t. query complexity.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Compare with previous works

Near-optimal
ground state
preparation

	U_H	U_I
QPE	$\mathcal{O}(\epsilon^{-1}\gamma^{-2})$	$\mathcal{O}(\gamma^{-2})$
GTC 2019	$\mathcal{O}(\epsilon^{-3/2}\gamma^{-1})$	$\mathcal{O}(\epsilon^{-1/2}\gamma^{-1})$
This work	$\mathcal{O}(\epsilon^{-1}\gamma^{-1})$	$\mathcal{O}(\gamma^{-1})$

Table: Query complexity for ground energy estimation.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Compare with previous works

Near-optimal
ground state
preparation

	U_H	U_I
QPE	$\mathcal{O}(\epsilon^{-1}\gamma^{-2})$	$\mathcal{O}(\gamma^{-2})$
GTC 2019	$\mathcal{O}(\epsilon^{-3/2}\gamma^{-1})$	$\mathcal{O}(\epsilon^{-1/2}\gamma^{-1})$
This work	$\mathcal{O}(\epsilon^{-1}\gamma^{-1})$	$\mathcal{O}(\gamma^{-1})$

Table: Query complexity for ground energy estimation.

- ▶ Get the best of both worlds!

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Compare with previous works

	U_H	U_I
QPE	$\mathcal{O}(\Delta^{-1}\gamma^{-2})$	$\mathcal{O}(\gamma^{-2})$
GTC 2019	$\mathcal{O}(\Delta^{-3/2}\gamma^{-1})$	$\mathcal{O}(\Delta^{-1/2}\gamma^{-1})$
This work	$\mathcal{O}(\Delta^{-1}\gamma^{-1})$	$\mathcal{O}(\gamma^{-1})$

Table: Query complexity for ground state preparation.

- ▶ Get the best of both worlds!

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Compare with previous works

	U_H	U_I
QPE	$\mathcal{O}(\Delta^{-1}\gamma^{-2})$	$\mathcal{O}(\gamma^{-2})$
GTC 2019	$\mathcal{O}(\Delta^{-3/2}\gamma^{-1})$	$\mathcal{O}(\Delta^{-1/2}\gamma^{-1})$
This work	$\mathcal{O}(\Delta^{-1}\gamma^{-1})$	$\mathcal{O}(\gamma^{-1})$

Table: Query complexity for ground state preparation.

- ▶ Get the best of both worlds!
- ▶ Near-optimal dependence on Δ and γ .

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Block-encoding

Near-optimal
ground state
preparation

- ▶ Encoding a matrix A in a unitary:

$$U = \begin{pmatrix} A/\alpha & \cdot \\ \cdot & \cdot \end{pmatrix}.$$

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Block-encoding

- ▶ Encoding a matrix A in a unitary:

$$U = \begin{pmatrix} A/\alpha & \cdot \\ \cdot & \cdot \end{pmatrix}.$$

- ▶ Can also write

$$U |0^m\rangle |\phi\rangle = |0^m\rangle (A/\alpha) |\phi\rangle + |\perp\rangle + \text{error}.$$

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Block-encoding

- ▶ Encoding a matrix A in a unitary:

$$U = \begin{pmatrix} A/\alpha & \cdot \\ \cdot & \cdot \end{pmatrix}.$$

- ▶ Can also write $U |0^m\rangle |\phi\rangle = |0^m\rangle (A/\alpha) |\phi\rangle + |\perp\rangle + \text{error}.$
- ▶ Many matrices of practical interest can be efficiently block-encoded (k -local, sparse, second-quantized fermionic Hamiltonians, etc.)

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Block-encoding

- ▶ Encoding a matrix A in a unitary:

$$U = \begin{pmatrix} A/\alpha & \cdot \\ \cdot & \cdot \end{pmatrix}.$$

- ▶ Can also write $U |0^m\rangle |\phi\rangle = |0^m\rangle (A/\alpha) |\phi\rangle + |\perp\rangle + \text{error}.$
- ▶ Many matrices of practical interest can be efficiently block-encoded (k -local, sparse, second-quantized fermionic Hamiltonians, etc.)
- ▶ First proposed in (Low and Chuang, 2019, “Hamiltonian simulation by qubitization”) (standard form)

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Quantum singular value transformation

Near-optimal
ground state
preparation

- ▶ **Quantum signal processing (QSP)** (Low and Chuang, 2017), **quantum singular value transformation (QSVT)** (Gilyén, Su, Low, and Wiebe, 2019).
- ▶ For a Hermitian A ,

$$U_A = \begin{pmatrix} A/\alpha & \cdot \\ \cdot & \cdot \end{pmatrix} \xrightarrow{\text{QSVT}} \begin{pmatrix} p(A/\alpha) & \cdot \\ \cdot & \cdot \end{pmatrix}.$$

- ▶ p is a degree- d polynomial, and $|p(x)| \leq 1/2$ for all $x \in [-1, 1]$.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Quantum singular value transformation

Near-optimal
ground state
preparation

- ▶ **Quantum signal processing (QSP)** (Low and Chuang, 2017), **quantum singular value transformation (QSVT)** (Gilyén, Su, Low, and Wiebe, 2019).
- ▶ For a Hermitian A ,

$$U_A = \begin{pmatrix} A/\alpha & \cdot \\ \cdot & \cdot \end{pmatrix} \xrightarrow{\text{QSVT}} \begin{pmatrix} p(A/\alpha) & \cdot \\ \cdot & \cdot \end{pmatrix}.$$

- ▶ p is a degree- d polynomial, and $|p(x)| \leq 1/2$ for all $x \in [-1, 1]$.
- ▶ Number of queries to U_A is d .

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Quantum singular value transformation

Near-optimal
ground state
preparation

- ▶ **Quantum signal processing (QSP)** (Low and Chuang, 2017), **quantum singular value transformation (QSVT)** (Gilyén, Su, Low, and Wiebe, 2019).
- ▶ For a Hermitian A ,

$$U_A = \begin{pmatrix} A/\alpha & \cdot \\ \cdot & \cdot \end{pmatrix} \xrightarrow{\text{QSVT}} \begin{pmatrix} p(A/\alpha) & \cdot \\ \cdot & \cdot \end{pmatrix}.$$

- ▶ p is a degree- d polynomial, and $|p(x)| \leq 1/2$ for all $x \in [-1, 1]$.
- ▶ Number of queries to U_A is d .
- ▶ Can prepare state $p(A/\alpha) |\phi\rangle$ (with amplitude amplification) and estimate $\|p(A/\alpha) |\phi\rangle\|$ (with amplitude estimation).

The ground energy
and the ground
state

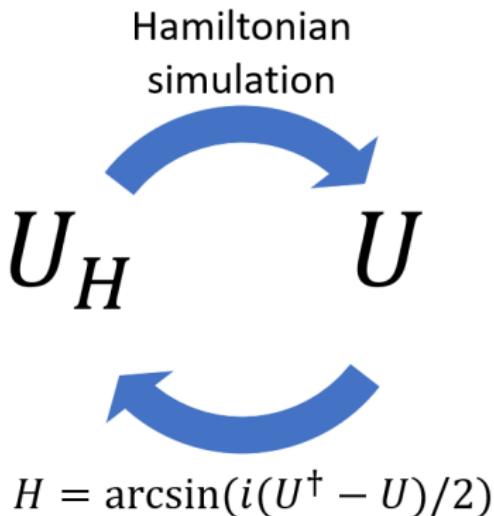
Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation


Lower bounds

Summary of results

Equivalence between query models

Near-optimal
ground state
preparation

U_H block-encodes H , $U = e^{-i\tau H}$.

- ▶ Going from $U = e^{-i\tau H}$ to H : easy to construct a block-encoding of $i(U^\dagger - U)/2$;
- ▶ Apply QSVT to $i(U^\dagger - U)/2$ to get $\arcsin(i(U^\dagger - U)/2) = H$. (GSLW full version)

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Ground state preparation through eigenstate filtering

- ▶ We have upper bound μ such that $\lambda_0 \leq \mu - \Delta/2 < \mu + \Delta/2 \leq \lambda_1$.
- ▶ Idea: use an **approximate projection operator** to filter out the unwanted eigenstates.
- ▶ **Filter polynomial** $p(x)$ satisfies

$$p(x) \begin{cases} \geq 1 - \epsilon' & -1 \leq x \leq -\delta \\ \leq \epsilon' & \delta \leq x \leq 1 \end{cases}$$

and $0 \leq p(x) \leq 1$ for $x \in [-1, 1]$.

- ▶ Can find polynomial of degree $d = \mathcal{O}(\delta^{-1} \log(\epsilon'^{-1}))$ (Low and Chuang, 2017) (Eremenko-Yuditskii, 2007).

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Eigenstate filtering

Near-optimal
ground state
preparation

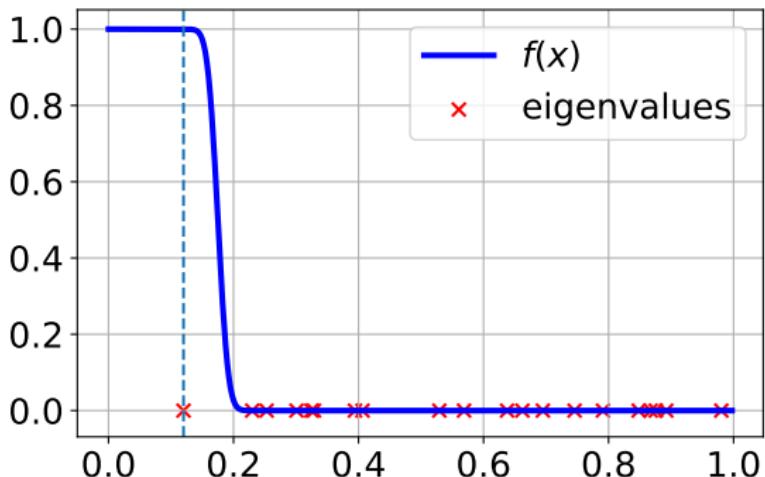


Figure: Applying QSQT with $f(x) = p((x - \mu)/2)$ to H .
 $\lambda_0 \leq \mu - \delta < \mu + \delta \leq \lambda_1$, $\delta = \mathcal{O}(\Delta)$.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Eigenstate filtering

Near-optimal
ground state
preparation

- ▶ $p((H - \mu)/2)$ approximates the projection operator $|\psi_0\rangle\langle\psi_0|$;

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Eigenstate filtering

Near-optimal
ground state
preparation

- ▶ $p((H - \mu)/2)$ approximates the projection operator $|\psi_0\rangle\langle\psi_0|$;
- ▶ $p((H - \mu)/2)|\phi_0\rangle$ is close to $|\psi_0\rangle$;

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Eigenstate filtering

Near-optimal
ground state
preparation

- ▶ $p((H - \mu)/2)$ approximates the projection operator $|\psi_0\rangle\langle\psi_0|$;
- ▶ $p((H - \mu)/2)|\phi_0\rangle$ is close to $|\psi_0\rangle$;
- ▶ In order to get ϵ -close to $|\psi_0\rangle$ we need $\tilde{\mathcal{O}}(\gamma^{-1}\Delta^{-1}\log(\epsilon^{-1}))$ queries to U_H and $\mathcal{O}(\gamma^{-1})$ queries to U_I (with amplitude amplification) (Theorem 6);

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Eigenstate filtering

- ▶ $p((H - \mu)/2)$ approximates the projection operator $|\psi_0\rangle\langle\psi_0|$;
- ▶ $p((H - \mu)/2)|\phi_0\rangle$ is close to $|\psi_0\rangle$;
- ▶ In order to get ϵ -close to $|\psi_0\rangle$ we need $\tilde{\mathcal{O}}(\gamma^{-1}\Delta^{-1}\log(\epsilon^{-1}))$ queries to U_H and $\mathcal{O}(\gamma^{-1})$ queries to U_I (with amplitude amplification) (Theorem 6);
- ▶ Requires knowledge of μ and Δ .

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Ground energy estimation

Near-optimal
ground state
preparation

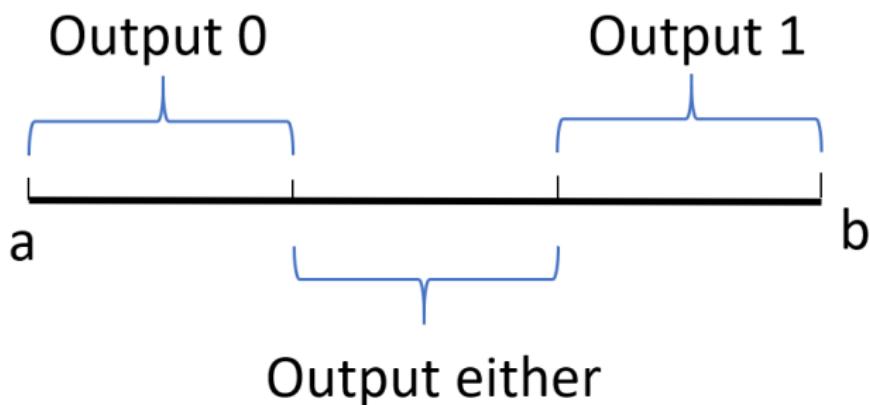
The decision problem: $a \leq \lambda_0 \leq b$.

- (i) When $a \leq \lambda_0 \leq \frac{2}{3}a + \frac{1}{3}b$, output 0;
- (ii) When $\frac{2}{3}a + \frac{1}{3}b \leq \lambda_0 \leq \frac{1}{3}a + \frac{2}{3}b$, output 0 or 1;
- (iii) When $\frac{1}{3}a + \frac{2}{3}b \leq \lambda_0 \leq b$, output 1.

The ground energy
and the ground
state

Previous works

The results


Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Ground energy estimation

Near-optimal
ground state
preparation

The decision problem: $a \leq \lambda_0 \leq b$.

- (i) When $a \leq \lambda_0 \leq \frac{2}{3}a + \frac{1}{3}b$, output 0;
- (ii) When $\frac{2}{3}a + \frac{1}{3}b \leq \lambda_0 \leq \frac{1}{3}a + \frac{2}{3}b$, output 0 or 1;
- (iii) When $\frac{1}{3}a + \frac{2}{3}b \leq \lambda_0 \leq b$, output 1.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

If the output is 0

If the output is 1

Ground energy estimation

- ▶ If the decision problem can be solved, then we can start with some $a \leq \lambda_0 \leq b$, and repeatedly solve the decision problem:
 - (1) If the output is 0, it indicates $a \leq \lambda_0 \leq \frac{1}{3}a + \frac{2}{3}b$.
We update $b \leftarrow \frac{1}{3}a + \frac{2}{3}b$;
 - (2) If the output is 1, it indicates $\frac{2}{3}a + \frac{1}{3}b \leq \lambda_0 \leq b$.
We update $a \leftarrow \frac{2}{3}a + \frac{1}{3}b$.
- ▶ Always guaranteed: $a \leq \lambda_0 \leq b$,
 $(b - a)_{\text{new}} = (2/3)(b - a)_{\text{old}}$.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Ground energy estimation

- ▶ If the decision problem can be solved, then we can start with some $a \leq \lambda_0 \leq b$, and repeatedly solve the decision problem:
 - (1) If the output is 0, it indicates $a \leq \lambda_0 \leq \frac{1}{3}a + \frac{2}{3}b$.
We update $b \leftarrow \frac{1}{3}a + \frac{2}{3}b$;
 - (2) If the output is 1, it indicates $\frac{2}{3}a + \frac{1}{3}b \leq \lambda_0 \leq b$.
We update $a \leftarrow \frac{2}{3}a + \frac{1}{3}b$.
- ▶ Always guaranteed: $a \leq \lambda_0 \leq b$,
 $(b - a)_{\text{new}} = (2/3)(b - a)_{\text{old}}$.
- ▶ Solve the decision problem through eigenstate filtering.

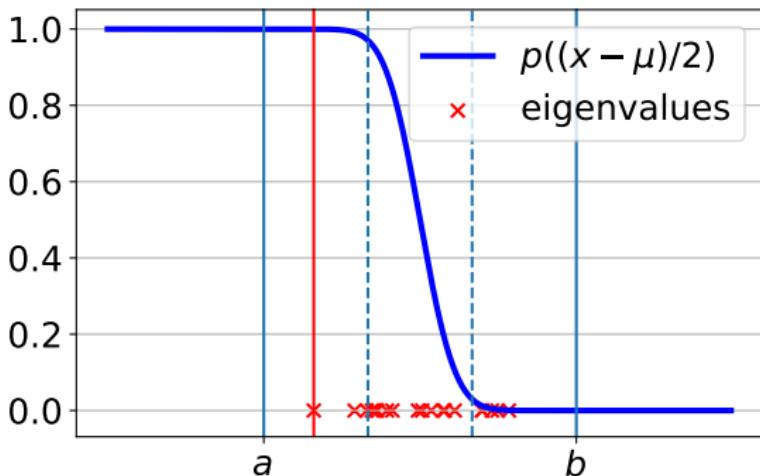
The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation


Ground state
preparation

Lower bounds

Summary of results

Solving the decision problem (i)

Near-optimal
ground state
preparation

$$\lambda_0 \leq \frac{2}{3}a + \frac{1}{3}b \implies \|p((H - \mu)/2) |\phi_0\rangle\| \geq \gamma(1 - \epsilon')$$

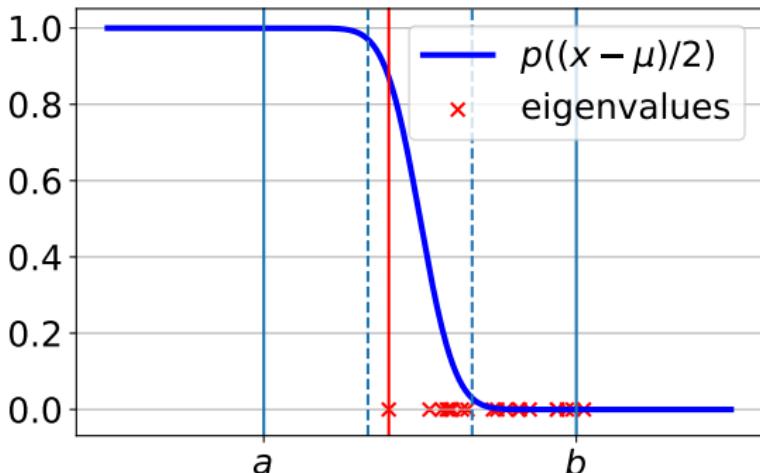
The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation


Ground state
preparation

Lower bounds

Summary of results

Solving the decision problem (ii)

Near-optimal
ground state
preparation

$$\frac{2}{3}a + \frac{1}{3}b \leq \lambda_0 \leq \frac{1}{3}a + \frac{2}{3}b$$

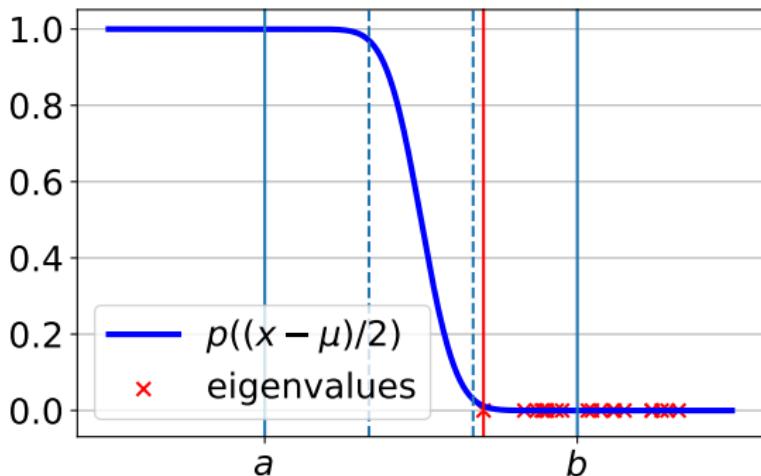
The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation


Ground state
preparation

Lower bounds

Summary of results

Solving the decision problem (iii)

Near-optimal
ground state
preparation

$$\lambda_0 \geq \frac{1}{3}a + \frac{2}{3}b \implies \|p((H - \mu)/2) |\phi_0\rangle\| \leq \epsilon'$$

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Solving the decision problem

Near-optimal
ground state
preparation

- ▶ Only need to distinguish between
 $\|p((H - \mu)/2) |\phi_0\rangle\| \geq \gamma(1 - \epsilon')$ and
 $\|p((H - \mu)/2) |\phi_0\rangle\| \leq \epsilon'$.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Solving the decision problem

Near-optimal
ground state
preparation

- ▶ Only need to distinguish between $\|p((H - \mu)/2) |\phi_0\rangle\| \geq \gamma(1 - \epsilon')$ and $\|p((H - \mu)/2) |\phi_0\rangle\| \leq \epsilon'$.
- ▶ Can use amplitude estimation to do so with overhead $\mathcal{O}(\gamma^{-1})$.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Solving the decision problem

Near-optimal
ground state
preparation

- ▶ Only need to distinguish between $\|p((H - \mu)/2) |\phi_0\rangle\| \geq \gamma(1 - \epsilon')$ and $\|p((H - \mu)/2) |\phi_0\rangle\| \leq \epsilon'$.
- ▶ Can use amplitude estimation to do so with overhead $\mathcal{O}(\gamma^{-1})$.
- ▶ Error probability can be exponentially suppressed using majority voting (Chernoff bound).

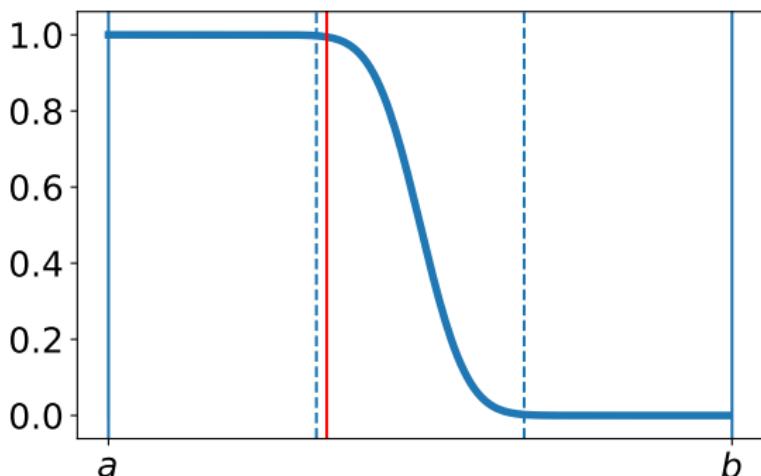
The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation


Ground state
preparation

Lower bounds

Summary of results

The search process

Near-optimal
ground state
preparation

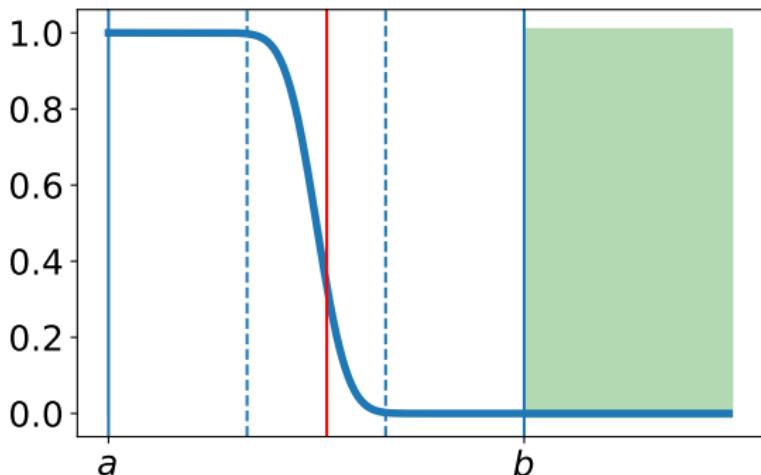
The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation


Ground state
preparation

Lower bounds

Summary of results

The search process

Near-optimal
ground state
preparation

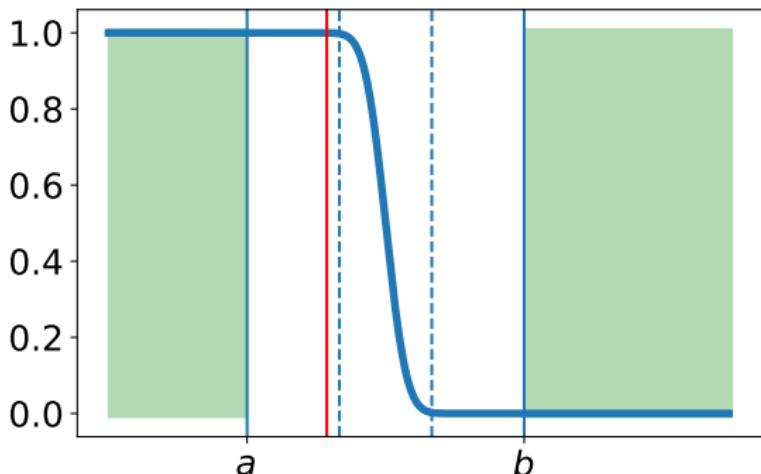
The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation


Ground state
preparation

Lower bounds

Summary of results

The search process

Near-optimal
ground state
preparation

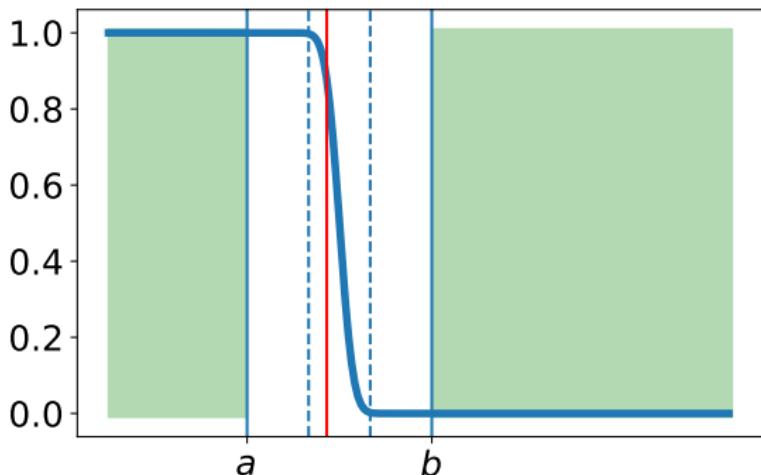
The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation


Ground state
preparation

Lower bounds

Summary of results

The search process

Near-optimal
ground state
preparation

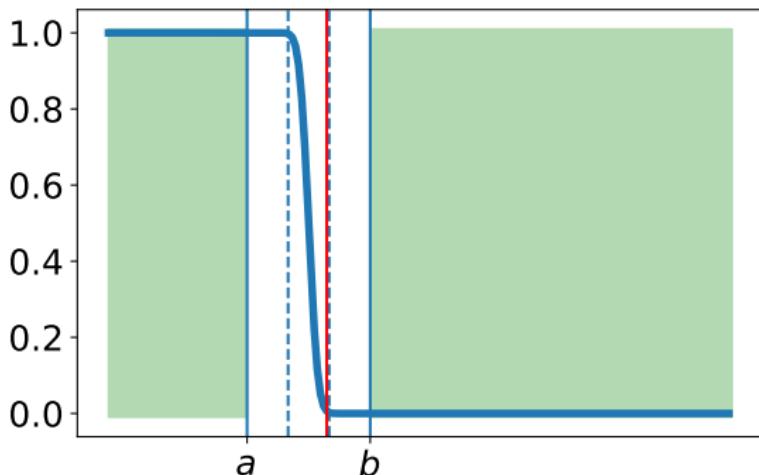
The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation


Ground state
preparation

Lower bounds

Summary of results

The search process

Near-optimal
ground state
preparation

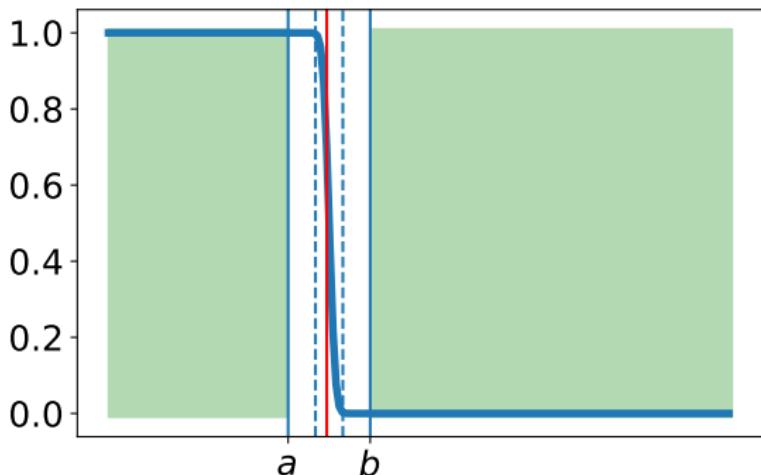
The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation


Ground state
preparation

Lower bounds

Summary of results

The search process

Near-optimal
ground state
preparation

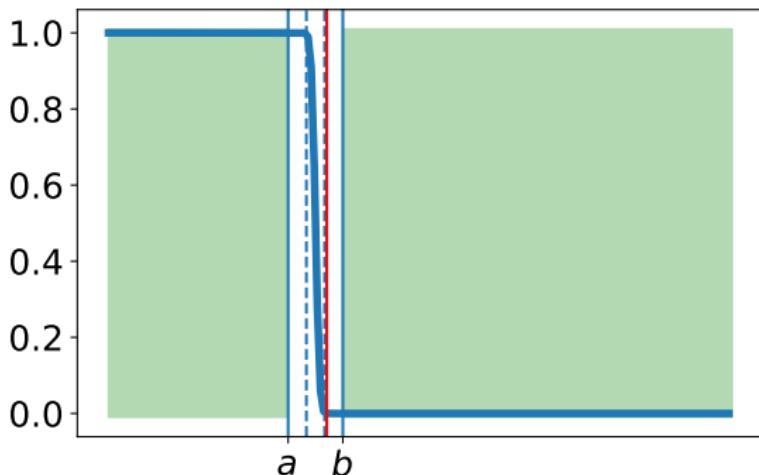
The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation


Ground state
preparation

Lower bounds

Summary of results

The search process

Near-optimal
ground state
preparation

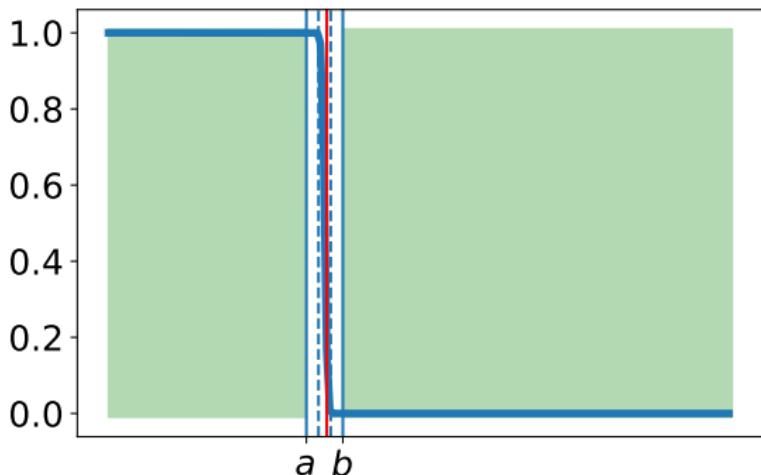
The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation


Ground state
preparation

Lower bounds

Summary of results

The search process

Near-optimal
ground state
preparation

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

The query complexity

Near-optimal
ground state
preparation

- ▶ Each search step uses $\mathcal{O}(\gamma^{-1})$ queries to U_I and $\mathcal{O}(\delta^{-1}\gamma^{-1})$ queries to U_H ;

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

The query complexity

- ▶ Each search step uses $\mathcal{O}(\gamma^{-1})$ queries to U_I and $\mathcal{O}(\delta^{-1}\gamma^{-1})$ queries to U_H ;
- ▶ There are $\mathcal{O}(\log(\epsilon^{-1}))$ steps, and $\delta = \frac{1}{3}, \frac{1}{3^2}, \frac{1}{3^3}, \dots, \epsilon$;

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

The query complexity

- ▶ Each search step uses $\mathcal{O}(\gamma^{-1})$ queries to U_I and $\mathcal{O}(\delta^{-1}\gamma^{-1})$ queries to U_H ;
- ▶ There are $\mathcal{O}(\log(\epsilon^{-1}))$ steps, and $\delta = \frac{1}{3}, \frac{1}{3^2}, \frac{1}{3^3}, \dots, \epsilon$;
- ▶ Total number of queries to U_I is $\mathcal{O}(\gamma^{-1})$ and number of queries to U_H is $\mathcal{O}(\epsilon^{-1}\gamma^{-1})$.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Ground state preparation

Near-optimal
ground state
preparation

- We want to prepare the ground state without knowing μ such that

$$\lambda_0 \leq \mu - \Delta/2 \leq \mu + \Delta/2 \leq \lambda_1.$$

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Ground state preparation

Near-optimal
ground state
preparation

- ▶ We want to prepare the ground state without knowing μ such that $\lambda_0 \leq \mu - \Delta/2 \leq \mu + \Delta/2 \leq \lambda_1$.
- ▶ Only need a weaker assumption $\lambda_1 - \lambda_0 \geq \Delta$;

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Ground state preparation

Near-optimal
ground state
preparation

- ▶ We want to prepare the ground state without knowing μ such that $\lambda_0 \leq \mu - \Delta/2 \leq \mu + \Delta/2 \leq \lambda_1$.
- ▶ Only need a weaker assumption $\lambda_1 - \lambda_0 \geq \Delta$;
- ▶ Also $|\langle \phi_0 | \psi_0 \rangle| \geq \gamma$;

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Ground state preparation

- ▶ We want to prepare the ground state without knowing μ such that

$$\lambda_0 \leq \mu - \Delta/2 \leq \mu + \Delta/2 \leq \lambda_1.$$

- ▶ Only need a weaker assumption $\lambda_1 - \lambda_0 \geq \Delta$;
- ▶ Also $|\langle \phi_0 | \psi_0 \rangle| \geq \gamma$;
- ▶ First estimate the ground energy to precision $\Delta/4$ to get a λ'_0 , let $\mu = \lambda'_0 + \Delta/2$, this μ satisfies

$$\lambda_0 \leq \mu - \Delta/4 < \mu + \Delta/4 \leq \lambda_1.$$

Then we apply eigenstate filtering.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Ground state preparation

- ▶ We want to prepare the ground state without knowing μ such that

$$\lambda_0 \leq \mu - \Delta/2 \leq \mu + \Delta/2 \leq \lambda_1.$$

- ▶ Only need a weaker assumption $\lambda_1 - \lambda_0 \geq \Delta$;
- ▶ Also $|\langle \phi_0 | \psi_0 \rangle| \geq \gamma$;
- ▶ First estimate the ground energy to precision $\Delta/4$ to get a λ'_0 , let $\mu = \lambda'_0 + \Delta/2$, this μ satisfies

$$\lambda_0 \leq \mu - \Delta/4 < \mu + \Delta/4 \leq \lambda_1.$$

Then we apply eigenstate filtering.

- ▶ $\mathcal{O}(\gamma^{-1} \Delta^{-1} \log(\epsilon^{-1}))$ queries to U_H and $\mathcal{O}(\gamma^{-1})$ queries to U_I .

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

The unstructured search problem

Near-optimal
ground state
preparation

- ▶ The unstructured search problem: among n -bit strings, given oracle U_w such that

$$U_w |x\rangle = \begin{cases} |x\rangle, & x \neq w \\ -|x\rangle, & x = w, \end{cases}$$

find w .

- ▶ Cannot be solved with $o(\sqrt{N})$ queries to U_w (BBBV Theorem).
- ▶ This is a ground state preparation problem with Hamiltonian U_w .

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Lower bound on the overlap dependence

Near-optimal
ground state
preparation

- ▶ We let $U_H = H = U_w$;
- ▶ $|\phi_0\rangle = |u\rangle = U_I |0^n\rangle$, $U_I = H^{\otimes n}$;
- ▶ $\gamma = 1/\sqrt{N}$, $\Delta = 2$.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Lower bound on the overlap dependence

Near-optimal
ground state
preparation

- ▶ We let $U_H = H = U_w$;
- ▶ $|\phi_0\rangle = |u\rangle = U_I |0^n\rangle$, $U_I = H^{\otimes n}$;
- ▶ $\gamma = 1/\sqrt{N}$, $\Delta = 2$.
- ▶ Suppose there exists an algorithm that, given $\Delta = \Omega(1)$, prepares the ground state with $o(\gamma^{-1})$ queries to U_H .

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Lower bound on the overlap dependence

Near-optimal
ground state
preparation

- ▶ We let $U_H = H = U_w$;
- ▶ $|\phi_0\rangle = |u\rangle = U_I |0^n\rangle$, $U_I = H^{\otimes n}$;
- ▶ $\gamma = 1/\sqrt{N}$, $\Delta = 2$.
- ▶ Suppose there exists an algorithm that, given $\Delta = \Omega(1)$, prepares the ground state with $o(\gamma^{-1})$ queries to U_H .
- ▶ Then this algorithm solves the unstructured search problem with $o(\sqrt{N})$ queries to $U_H = U_w$.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Lower bound on the overlap dependence

Near-optimal
ground state
preparation

- ▶ We let $U_H = H = U_w$;
- ▶ $|\phi_0\rangle = |u\rangle = U_I |0^n\rangle$, $U_I = H^{\otimes n}$;
- ▶ $\gamma = 1/\sqrt{N}$, $\Delta = 2$.
- ▶ Suppose there exists an algorithm that, given $\Delta = \Omega(1)$, prepares the ground state with $o(\gamma^{-1})$ queries to U_H .
- ▶ Then this algorithm solves the unstructured search problem with $o(\sqrt{N})$ queries to $U_H = U_w$.
- ▶ Contradiction!

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Overlap-gap trade-off

Near-optimal
ground state
preparation

- ▶ Childs, Deotto, Farhi, and Goldstone, 2002,
“Quantum search by measurement”.
- ▶ $D = I - 2|u\rangle\langle u|$, $|u\rangle = |+\rangle^{\otimes n}$,
 $H(t) = (1-t)D + tU_w$.

The ground energy
and the ground
state

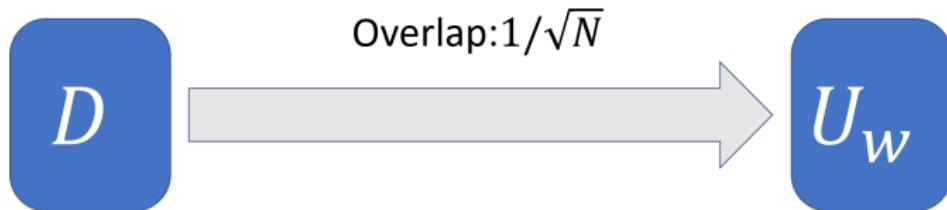
Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation


Lower bounds

Summary of results

Overlap-gap trade-off

Near-optimal
ground state
preparation

- ▶ Childs, Deotto, Farhi, and Goldstone, 2002, “Quantum search by measurement”.
- ▶ $D = I - 2|u\rangle\langle u|$, $|u\rangle = |+\rangle^{\otimes n}$,
 $H(t) = (1-t)D + tU_w$.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Overlap-gap trade-off

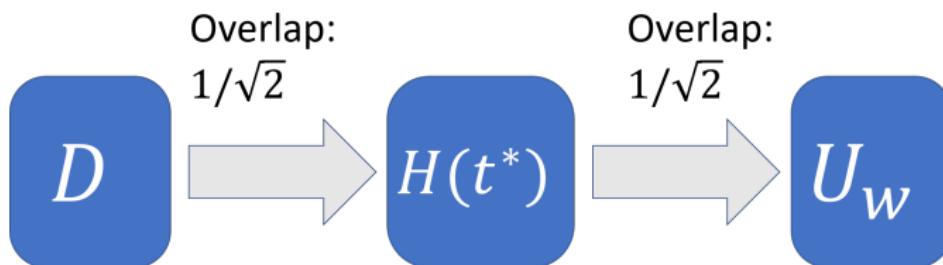
Near-optimal
ground state
preparation

- ▶ Childs, Deotto, Farhi, and Goldstone, 2002,
“Quantum search by measurement”.
- ▶ $D = I - 2|u\rangle\langle u|$, $|u\rangle = |+\rangle^{\otimes n}$,
 $H(t) = (1-t)D + tU_w$.

The ground energy
and the ground
state

Previous works

The results


Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Gap: $1/\sqrt{N}$

$$t^* = 1/2$$

Overlap-gap trade-off

Near-optimal
ground state
preparation

- ▶ Childs, Deotto, Farhi, and Goldstone, 2002,
“Quantum search by measurement”.
- ▶ $D = I - 2|u\rangle\langle u|$, $|u\rangle = |+\rangle^{\otimes n}$,
 $H(t) = (1-t)D + tU_w$.

$$t^* = 1/2 - N^{-1/2+\delta}$$

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results

Summary of results

Near-optimal
ground state
preparation

- ▶ Preparation of the ground state with knowledge of μ through eigenstate filtering;
- ▶ Ground energy estimation through repeated solving a decision problem;
- ▶ Ground state preparation with near-optimal dependence on the overlap and the spectral gap.

The ground energy
and the ground
state

Previous works

The results

Ground state
preparation
through filtering

Ground energy
estimation

Ground state
preparation

Lower bounds

Summary of results