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Classical simulation

2𝑛 amplitudes 2𝑛 × 2𝑛 sparse matrix

Perform 𝑚 sparse matrix-vector multiplications
Runtime: 2𝑛𝑚
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Runtime 2treewidth rather than 2𝑛

Circuit geometry

Planar graphs: treewidth= 𝑂 |𝑉|

𝑑

𝑛

Constant-depth planar circuits

Runtime: 2𝑂( 𝑑𝑛) < 2𝑛



Clifford circuits
Input |0𝑛⟩, gate set:

𝐻 =
1

2

1 1
1 −1

, 𝑆 =
1 0
0 𝑖

, 𝐶𝑍 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

Gottesman-Knill Theorem [Gottesman 97]
Clifford circuits can be simulated efficiently

Stabilizer formalism
[Gottesman 97], 
[Aaronson-Gottesman 04]



Clifford circuits
Input |0𝑛⟩, gate set:

𝐻 =
1

2

1 1
1 −1

, 𝑆 =
1 0
0 𝑖

, 𝐶𝑍 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1
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Stabilizer formalism
[Gottesman 97], 
[Aaronson-Gottesman 04]

Affine space + phase
[Van den Nest 08]

Graph state formalism
[Anders-Briegel 05]

CH form
[Bravyi et al 19]
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Clifford circuits

Apply a gate 𝑂 𝑛 [Gottesman 97]

Measure one qubit 𝑂 𝑛2 [Aaronson-Gottesman 04]

Measure all qubits 𝑂 𝑛3 [Aaronson-Gottesman 04]

Measure 𝑘 qubits ෨𝑂 𝑛2𝑘𝜔−2 [Gosset-Grier-AK-Schaeffer 20]

Measure all qubits ෨𝑂 𝑛𝜔 [Gosset-Grier-AK-Schaeffer 20]

Any number of 𝐶𝑍 gates ෨𝑂 𝑛𝜔 [Gosset-Grier-AK-Schaeffer 20]

Gottesman-Knill Theorem [Gottesman 97]
Clifford circuits can be simulated efficiently

2 ≤ 𝜔 < 2.37… [Strassen 69],…, [Alman-Williams 19]



Circuit geometry + Cliffords = ?
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Theorem
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Planar Clifford circuits
Theorem
If 𝐶𝑍 gates of a Clifford circuit act only on edges of a planar graph, 
we can sample from the output distribution in time ෨𝑂(𝑛𝜔/2𝑑𝜔)

For 𝑑 = 𝑂 1 : ෨𝑂 𝑛𝜔/2 < ෨𝑂 𝑛𝜔 < 𝑂 𝑛3

Naive [Aaronson-Gottesman 04]



Graph states

Given a graph 𝐺,

𝐺 = ෑ

𝑎𝑏∈𝐸 𝐺

𝐶𝑍𝑎𝑏 +
⊗𝑛



Graph state simulation problem

Input: Graph 𝐺, Pauli bases 𝑃𝑣 ∈ {𝑋, 𝑌, 𝑍} for each 𝑣

Task: Sample 𝑧 ∈ {0,1}𝑛 from

Pr 𝑧 = 𝑧 𝑈bases 𝐺
2
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[Raussendorf-Briegel 01] (MBQC)

Adaptive arbitrary measurements on grid graph states: Universal

Adaptive Pauli measurements on grid graph states: Clifford circuits

Grid graphs

Graph state simulation problem

Input: Graph 𝐺, Pauli bases 𝑃𝑣 ∈ {𝑋, 𝑌, 𝑍} for each 𝑣

Task: Sample 𝑧 ∈ {0,1}𝑛 from

Pr 𝑧 = 𝑧 𝑈bases 𝐺
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Graph state simulation problem on 𝑛 × 𝑛 grid graph

[Bravyi-Gosset-König 18]

Quantum algorithm: constant-depth

Classical algorithm: must have at least log-depth

Grid graphs



Graph state simulation problem on 𝑛 × 𝑛 grid graph

[Bravyi-Gosset-König 18]

Quantum algorithm: constant-depth

Classical algorithm: must have at least log-depth

Goal: Study gate complexity

Grid graphs



Quantum

Gate complexity = 𝑂 𝐸 + 𝑉
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Gate complexity of graph state simulation

𝐺 = ෑ

𝑎𝑏∈𝐸 𝐺

𝐶𝑍𝑎𝑏 +
⊗𝑛



Quantum

Gate complexity = 𝑂 𝐸 + 𝑉

𝑂 𝑛 for planar graphs

Gate complexity of graph state simulation

𝐺 = ෑ

𝑎𝑏∈𝐸 𝐺

𝐶𝑍𝑎𝑏 +
⊗𝑛

Theorem
The graph state simulation problem can be solved classically in time
෨𝑂 𝑛𝜔/2 for planar graphs

෨𝑂 𝑛𝜔/2 < ෨𝑂 𝑛𝜔 < 𝑂 𝑛3

Naive [Aaronson-Gottesman 04]
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Naïve approach

Initialize 𝑛 qubits

Apply 𝐶𝑍 gates

Measure all qubits

෨𝑂 𝑛𝜔

෨𝑂 𝑛𝜔

෨𝑂 𝑛𝜔

Total runtime: ෨𝑂 𝑛𝜔

Warmup

𝑛

𝑛



Improved approach

Recursion on subgrids 4 ⋅ 𝑇 𝑛/4
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Improved approach

Recursion on subgrids

Initialize remaining qubits
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Key idea: Schedule operations to minimize qubits stored in memory



Improved approach

Recursion on subgrids

Initialize remaining qubits

Apply gates

Measure

Warmup

Key idea: Schedule operations to minimize qubits stored in memory

Nested dissection 
[George 73], [Lipton-Rose-Tarjan 79], [Alon-Yuster 10]

4 ⋅ 𝑇 𝑛/4

෨𝑂 𝑛𝜔/2

෨𝑂 𝑛𝜔/2
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Total runtime: 4 ⋅ 𝑇 𝑛/4 + ෨𝑂 𝑛𝜔/2 = ෨𝑂 𝑛𝜔/2



Tree decompositions
Set of bags 𝐵𝑖 ⊆ 𝑉 𝐺 arranged in a tree such that

• Each vertex appears somewhere

• Each edge appears somewhere

• Bags containing a given vertex form a connected subtree
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Tree decompositions
Width of decomposition 𝑇

𝑇 =max
𝑖

𝐵𝑖 − 1

Treewidth of graph

t 𝐺 = min |𝑇|

Planar graphs

𝑡 𝐺 = 𝑂 𝑉



Tree decompositions

Idea: Use tree decomposition to derive schedule



Tree decomposition ↦ circuit
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Tree decomposition ↦ circuit

Implements 0 00 + 1 11 if 
measurement result is |0⟩

𝐺 = ෑ

𝑎𝑏∈𝐸 𝐺

𝐶𝑍𝑎𝑏|+
⊗𝑛⟩



Tree decomposition ↦ circuit

Circuit produces correct graph state 
if all merge gadgets give result |0⟩

𝐺 = ෑ

𝑎𝑏∈𝐸 𝐺

𝐶𝑍𝑎𝑏|+
⊗𝑛⟩



Tree decomposition ↦ circuit

Simulation time 

෍

bags

෨𝑂( bag 𝜔) =



Tree decomposition ↦ circuit

෨𝑂(𝑛𝑡𝜔−1), otherwise, when given 
tree decomposition

෨𝑂 𝑛𝜔/2 , using planar separators 

[Lipton-Tarjan 79]
Simulation time 

෍

bags

෨𝑂( bag 𝜔) =



Tree decomposition ↦ circuit

Merge ancillas are corrected in 𝑂 𝑛
time by finding a suitable stabilizer



Other results

Graph state simulation with postselection

Same runtime: ෨𝑂 𝑛𝜔/2

Correction subroutine is equivalent to solving 𝐴𝑥 = 𝑏 over 𝔽2 in 
time ෨𝑂 𝑛𝜔/2 where 𝐴 is the adjacency matrix of a planar graph. 
Extends results of [Alon-Yuster 10] to allow for singular 𝐴.
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Correction subroutine is equivalent to solving 𝐴𝑥 = 𝑏 over 𝔽2 in 
time ෨𝑂 𝑛𝜔/2 where 𝐴 is the adjacency matrix of a planar graph. 
Extends results of [Alon-Yuster 10] to allow for singular 𝐴.

Clifford tensor networks

Algorithm for sampling a nonzero element



Theorem

If 𝐶𝑍 gates of a Clifford circuit act only on edges of a planar graph, we 
can sample from the output distribution in time ෨𝑂(𝑛𝜔/2𝑑𝜔)

Summary

Theorem
The graph state simulation problem can be solved classically in time
෨𝑂 𝑛𝜔/2 for planar graphs

Open problem
Graph state simulation on sparse nonplanar graphs remains a 
candidate for quantum speedup

Graph state simulation problem
Given 𝐺 and 𝑃𝑣 ∈ {𝑋, 𝑌, 𝑍} for each 𝑣, simulate a measurement on |𝐺⟩
in the 𝑃𝑣 bases


