Fast simulation of planar
Clifford circuits

David Gosset Daniel Grier Alex Kerzner Luke Schaeffer

waATERLGO 1QC &5

Classical simulation

Task: Sample|z]

0m)

NN N RN

Classical simulation

Task: Sample|z]

0m)

Us

2™ amplitudes

1

2™ x 2™ sparse matrix

Perform m sparse matrix-vector multiplications

Runtime: 2"m

UTI’J:

NN N RN

Circuit geometry
[Markov-Shi 05]

—H T

T

[d A
\J/
£

Circuit geometry
[Markov-Shi 05]

Runtime 2treewldth pather than 27

— T

s

Planar graphs: treewidth= 0(,/ |V|)

Circuit geometry
[Markov-Shi 05]

Runtime 2treewldth pather than 27

—

— H T
— 7 l
/[N
N S

\

Constant-depth planar circuits
Runtime; 200Vdn) < pn

Planar graphs: treewidth= O(,/ |V|)

Clifford circuits
Input |0"), gate set:

1
i A B a-

oo R

o O RO

O = O O

o O O

—1]

(Gottesman-Knill Theorem |Gottesman 97]

Clifford circuits can be simulated efficiently
N

Stabilizer formalism
[Gottesman 97],
[Aaronson-Gottesman 04]

Clifford circuits
Input |0"), gate set:

1 0 0 O
It 1 1 0 01 0 0
H_ﬁll —1]’ S_[o i]' C2=10 0 1 o0
0 0 0 -—1.
(.
Gottesman-Knill Theorem [Gottesman 97]
Clifford circuits can be simulated efficiently
g J
Stabilizer formalism Graph state formalism Affine space + phase = CH form
[Gottesman 97], [Anders-Briegel 05] [Van den Nest 08] [Bravyi et al 19]

[Aaronson-Gottesman 04]

Clifford circuits

(Gottesman-Knill Theorem |Gottesman 97]
Clifford circuits can be simulated efficiently

-
Apply a gate 0(n) (Gottesman 97]
Measure one qubit 0(n?) [Aaronson-Gottesman 04]
Measure all qubits 0(n3) [Aaronson-Gottesman 04]

Clifford circuits

(Gottesman-Knill Theorem |Gottesman 97]
Clifford circuits can be simulated efficiently

-
Apply a gate 0(n)
Measure one qubit 0(n?)
Measure all qubits 0(n3)
Measure k qubits 0O(n%k®=?)
Measure all qubits 0(n®)
2 <w<237..

Gottesman 97|

Aaronson-Gottesman 04]

Aaronson-Gottesman 04]

|Gosset-Grier-AK-Schaeffer 20]
|Gosset-Grier-AK-Schaeffer 20]

[Strassen 69],..., [Alman-Williams 19]

Clifford circuits

(Gottesman-Knill Theorem |Gottesman 97]
Clifford circuits can be simulated efficiently

-
Apply a gate 0(n) Gottesman 97]
Measure one qubit 0(n?) [Aaronson-Gottesman 04]
Measure all qubits 0(n?) [Aaronson-Gottesman 04]
Measure k qubits 0(n’k®~2) [Gosset-Grier-AK-Schaeffer 20
Measure all qubits 0(n®) (Gosset-Grier-AK-Schaeffer 20
Any number of CZ gates | 0(n®) [Gosset-Grier-AK-Schaeffer 20]

2 < w<237.. [Strassen 69],..., [Alman-Williams 19]

Circuit geometry + Cliffords =?

Circuit geometry

[Markov-5hi 05]
Runtime 2treewidth mather than 2™

L7

Planar graphs: treewidth= 0 (1;' |1"'|]I

I T
J\
T I

Clifford circuits

Input |0"), gate set:

1
T RS |

CZ=

=T ==

e

==

(== R =

(== =

Gottesman-Knill Theorem [Gottesman 97]
Clifford circuits can be simulated efficiently

Stabilizer formalism
[Gottesman 97],
|Aaronson-Gottesman 04

Planar Clifford circuits

Planar Clifford circuits

 Theorem
If CZ gates of a Clifford circuit act only on edges of a planar graph,
we can sample from the output distribution in time 0 (n®/?d®)

~N

J

_
0) H H ’ A
CE TS G
0) — 4
0)2 gIH S H :: e 0

Planar Clifford circuits

 Theorem
If CZ gates of a Clifford circuit act only on edges of a planar graph,
we can sample from the output distribution in time 0 (n®/?d®)

~N

- J
0)s — H] H—s] T e C
0)p —{H : ~
0) H . . ~A
0)p — H I HH S HF-7* ° 0
d
Naive |Aaronson-Gottesman 04]

Ford = 0(1): 0(n®/?) < 0 (n®) < 0(n3)

Graph states

Given a graph G,
6)=| | czal®r

ab€eE(G)

Graph states

Given a graph G,
6)=| | czal®r

ab€eE(G)

Graph state simulation problem

Input: Graph G, Pauli bases P, € {X,Y, Z} for each v
Task: Sample z € {0,1}" from

2
Pr(z] = KZlUbaseslG)l

Grid graphs
[Raussendorf-Briegel 01] (MBQC)

Adaptive arbitrary measurements on grid graph states: Universal
Adaptive Pauli measurements on grid graph states: Clifford circuits

Graph state simulation problem

Input: Graph G, Pauli bases P, € {X,Y, Z} for each v
Task: Sample z € {0,1}" from

2
Pr(z] = KZlUbaseslG)l

Grid graphs

Graph state simulation problem on v/n X y/n grid graph

[Bravyi-Gosset-Konig 18]
Quantum algorithm: constant-depth
Classical algorithm: must have at least log-depth

Grid graphs
Graph state simulation problem on v/n X y/n grid graph
[Bravyi-Gosset-Konig 18]
Quantum algorithm: constant-depth

Classical algorithm: must have at least log-depth

Goal: Study gate complexity

Gate complexity of graph state simulation

Quantum

Gate complexity = O(|E| + |V]) IG) = 1_[CZ | +)®"
O (n) for planar graphs ab€E(G)

Gate complexity of graph state simulation

Quantum

Gate complexity = O(|E| + |V]) IG) = 1_[CZ | +)®"
O (n) for planar graphs ab€E(G)

(Theorem

The graph state simulation problem can be solved classically in time
0(n®/?) for planar graphs

_

Naive |Aaronson-Gottesman 04]

0(n®/?) < 0 (n®) < 0(n3)

Warmup

Naive approach

\ 4

Warmup

Naive approach

Initialize n qubits

0(n%)

Warmup

Naive approach

Initialize n qubits

Apply CZ gates

0(n®)

0 (n®)

Warmup

Naive approach
Initialize n qubits
Apply CZ gates

Measure all qubits

Total runtime: O (n®)

0 (n®)
0 (n®)

0 (n®)

Warmup

Improved approach

Recursion on subgrids

#@=0Hmn)

4-T(n/4)

Warmup

Improved approach

Recursion on subgrids

Initialize remaining qubits

#@=0(/n)

4-T(n/4)

O‘(nw/z)

Vn

Warmup

Improved approach

Recursion on subgrids
Initialize remaining qubits

Apply gates

#@=0(/n)

4-T(n/4)
0(n«/?)

5(nw/2)

Warmup

Improved approach

Recursion on subgrids
Initialize remaining qubits
Apply gates

Measure

#@=0(/n)

4-T(n/4)
0(n«/?)
5(nw/2)

0(n«/?)

Warmup

Improved approach SRERERER
Recursion on subgrids 4-T(n/4) | S S G S
Initialize remaining qubits 5(7’1“” 2) SRR
L L L L L

Apply gates 0(n®/?)
L L L & &
Measure O‘(nw/Z) SR N S S—
Total runtime: 4 - T(n/4) + é(n“’/z) = 5(71“’/2) J D S S

Key idea: Schedule operations to minimize qubits stored in memory

Nested dissection
Warmllp |George 73], [Lipton-Rose-Tarjan 79], [Alon-Yuster 10]

Improved approach SRR
» » . 4 L 4 . 4
Recursion on subgrids 4-T(n/4) | S R S S
Initialize remaining qubits 5(7’1“” 2) T
L L L » &
Apply gates 0(n®/?)
» L L L »
Measure O‘(nw/z) S A AN S— |
L L L L L
Total runtime: 4 - T(n/4) + é(n‘”/z) = é(n“’/z)) D S S

Key idea: Schedule operations to minimize qubits stored in memory

Tree decompositions

Set of bags B; € V(G) arranged in a tree such that

* Each vertex appears somewhere

* Each edge appears somewhere

* Bags containing a given vertex form a connected subtree

Tree decompositions

Set of bags B; € V(G) arranged in a tree such that

* Each vertex appears somewhere

* Each edge appears somewhere

* Bags containing a given vertex form a connected subtree

Tree decompositions

Set of bags B; € V(G) arranged in a tree such that

* Each vertex appears somewhere

* Each edge appears somewhere

* Bags containing a given vertex form a connected subtree

Tree decompositions

Set of bags B; € V(G) arranged in a tree such that

* Each vertex appears somewhere

* Each edge appears somewhere

* Bags containing a given vertex form a connected subtree

Tree decompositions

Width of decomposition T
IT| = max|B;| — 1
l

Treewidth of graph
t(G) = min |T|

Tree decompositions

Width of decomposition T

IT| = miaXIBiI -1 Planar graphs
Treewidth of graph t(G) =0 (, / IVI)
t(G) = min |T|

Tree decompositions

Idea: Use tree decomposition to derive schedule

Tree decomposition ~ circuit

Tree decomposition ~ circuit

ABC +— BC |__Introduce node |
Forget node
\ Merge node
BCD — BD
CDE — CD BDG — BG — BFG — &
DGH — DG G) = C7 n

ab€eE(G)

17 -
Ko P N

) ? G
I+ /

Tree decomposition ~ circuit

ABC — BC

BDG — BG — BFG — &

N/

DGH — DG |G) = l l CZ, |_|_®n>
ab€eE(G)

17 —
K P N

) ? G
I+ /

Tree decomposition ~ circuit

ABC — BC Intrgduce nod
Forget node
| Merge node |
BCD {+— BD
CDE — CD BDG — BG — BFG — @&

AN
e
DGH — DG |G) = 1_[CZab|+®n>

ab€eE(G)

>jw . HFTEE

) ? G
I+ /

Tree decomposition ~ circuit

ABC BC Intr?duc d
Forget nod
| Merge nod |
BCD {— BD
CDE — CD BDG — BG — BFG — &

AN
e
DGH — DG |G) = 1_[CZab|+®n>

ab€eE(G)

>Tf—f< - HFTEE

) ? G
I+ /

Tree decomposition ~ circuit

ABC — BC

BCD +— BD

CDE — CD BDG — BG — BFG — &

e
DGH — DG |G) = 1_[CZab|+®n>

ab€eE(G)

Implements |0)(00| + |1){11] if

measurement result is |0)
f7(
CT

7 |‘|‘>me F
D B
|+>u 1 } u G
I+ I
+) — H

Tree decomposition ~ circuit

ABC — BC Intrgduce node
Forget node

| Merge node |

BCD +— BD

N

CDE — CD BDG — BG — BFG — &

e
DGH — DG |G) = 1_[CZab|+®n>

ab€eE(G)

Circuit produces correct graph state

— if all merge gadgets give result |0)
CT

7 |‘|‘>me F
D B
|+>u 1 } u G
I+ I
+) — H

Tree decomposition ~ circuit

N

Simulation time

> 0(lbagl®) =

bags

>Tf—f< - HFTEE

Tree decomposition ~ circuit

ABC — BC Intrgduce node
Forget node
\ Merge node
BCD — BD
CDE — CD BDG — BG — BFG — O

e
|+>A I [A DGH — DG

Simulation time 0 (n“)/ 2), using planar separators
~ Lipton-Tarjan 79
2 0(|bag|a) - [Lip J]
bags 0 (nt®~1), otherwise, when given
__tree decomposition

|+>FT_T7 /i
D ug
/

Tree decomposition ~ circuit

ABC — BC Intrgduce node
Forget node
\ Merge node
BCD — BD
CDE — CD BDG — BG — BFG — O

N/

Merge ancillas are corrected in O(n)

time by finding a suitable stabilizer
CT
e +) F
o
G

/

;—I_“_ p

Other results

Graph state simulation with postselection

Same runtime: 0 (n®/?)

Correction subroutine is equivalent to solving Ax = b over [, in
time O(n“’/ 2) where A is the adjacency matrix of a planar graph.
Extends results of [Alon-Yuster 10] to allow for singular A.

Other results

Graph state simulation with postselection
Same runtime: 0 (n®/?)

Correction subroutine is equivalent to solving Ax = b over [, in
time O(n“’/ 2) where A is the adjacency matrix of a planar graph.
Extends results of [Alon-Yuster 10] to allow for singular A.

Clifford tensor networks
Algorithm for sampling a nonzero element

Summary

Graph state simulation problem
Given G and P, € {X,Y, Z} for each v, simulate a measurement on |G)
in the P, bases

 Theorem A
The graph state simulation problem can be solved classically in time

kﬁ (n®/2) for planar graphs y

(Theorem A
[f CZ gates of a Clifford circuit act only on edges of a planar graph, we

_can sample from the output distribution in time 0 (n®/?2d®) y

Open problem
Graph state simulation on sparse nonplanar graphs remains a
candidate for quantum speedup

