

Fast simulation of planar Clifford circuits

David Gosset

Daniel Grier

Alex Kerzner

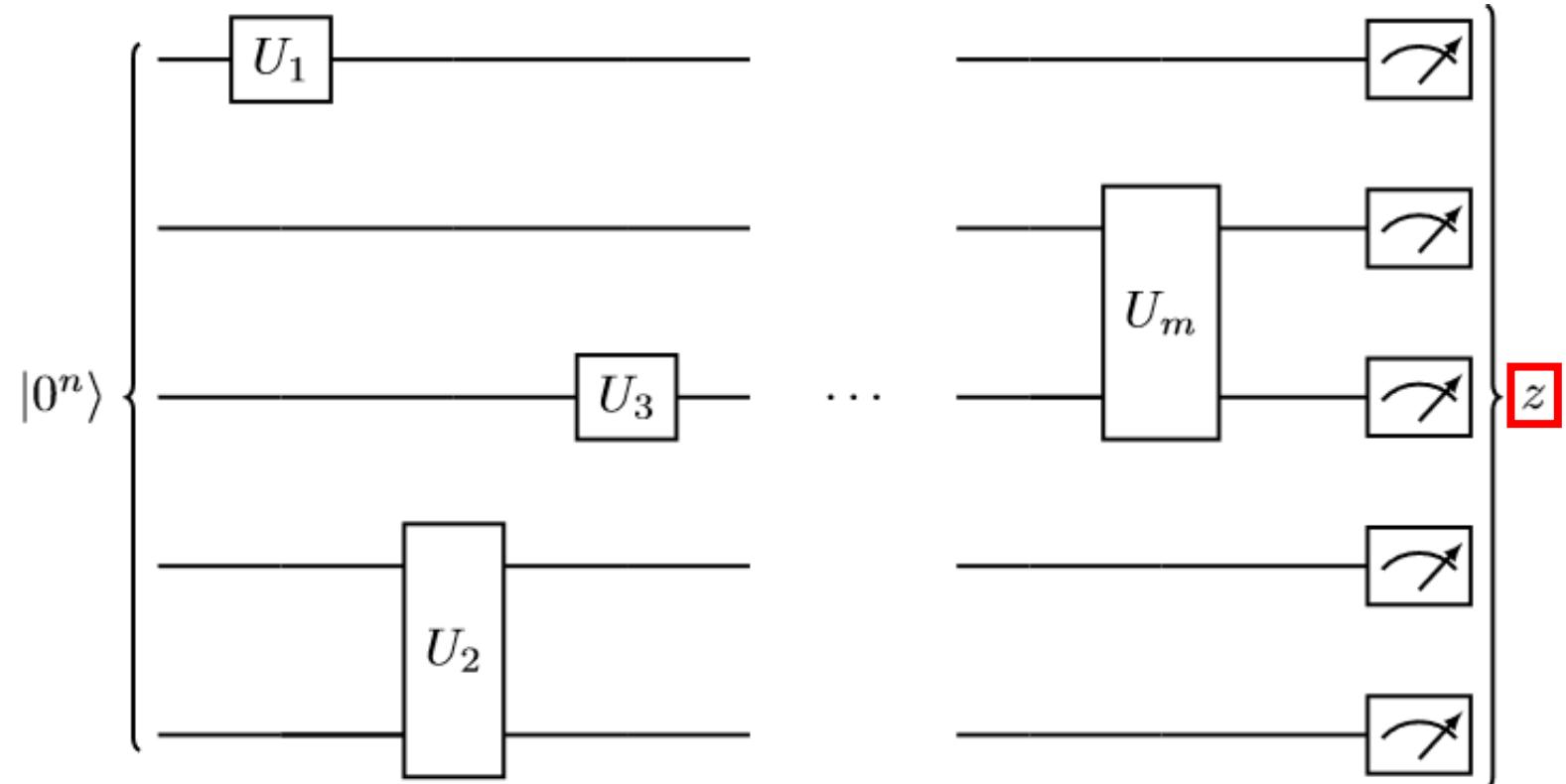
Luke Schaeffer

UNIVERSITY OF
WATERLOO

IQC Institute for
Quantum
Computing

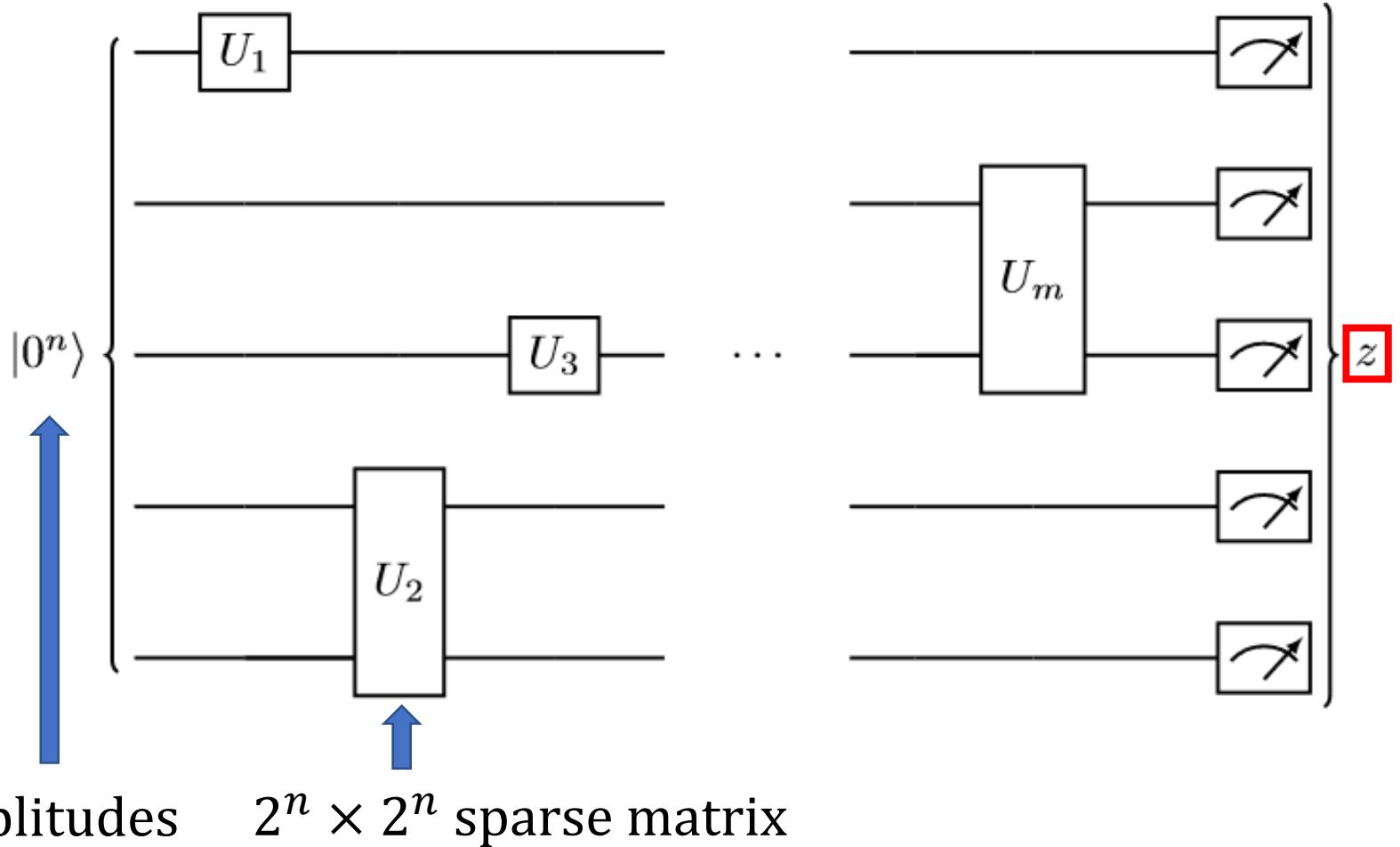
Classical simulation

Task: Sample z



Classical simulation

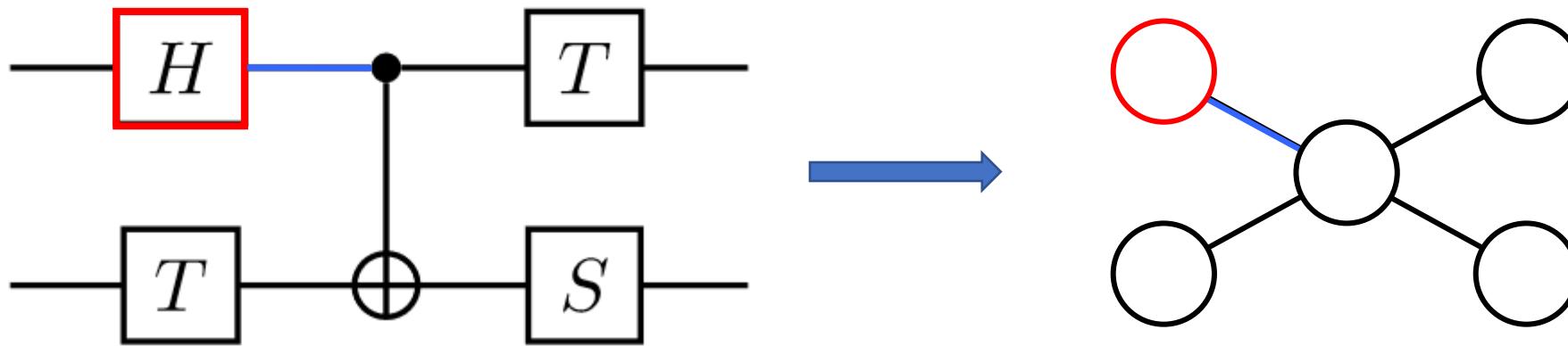
Task: Sample z



Perform m sparse matrix-vector multiplications
Runtime: $2^n m$

Circuit geometry

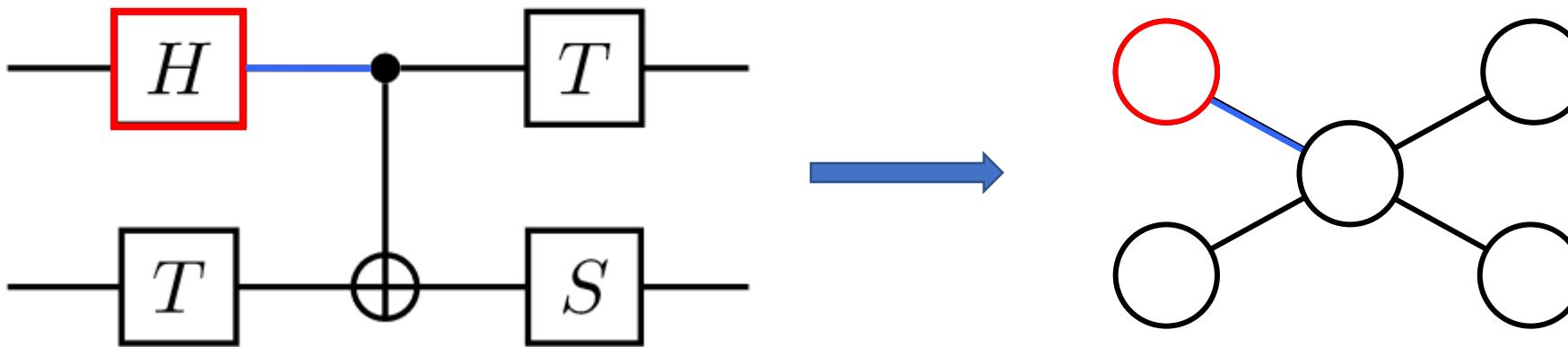
[Markov-Shi 05]



Circuit geometry

[Markov-Shi 05]

Runtime $2^{\text{treewidth}}$ rather than 2^n

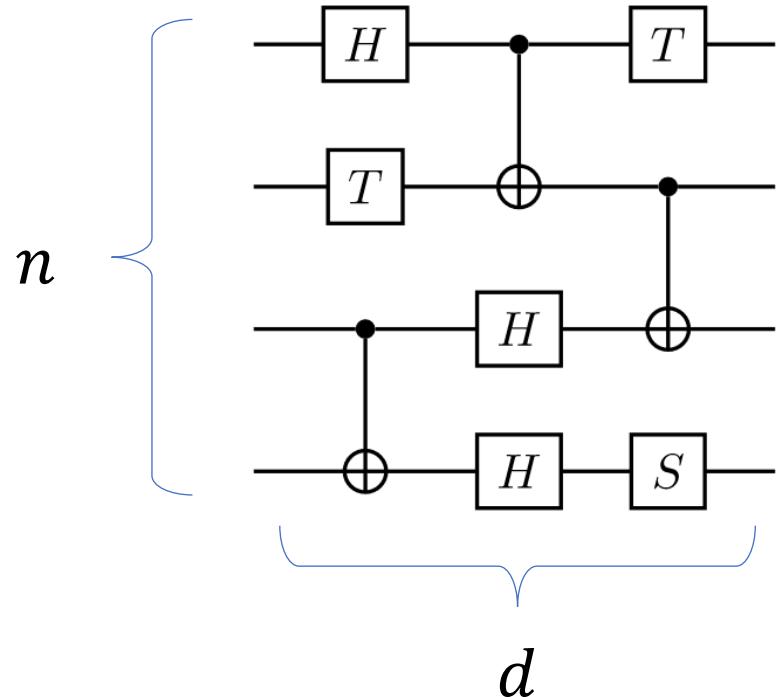


Planar graphs: $\text{treewidth} = O(\sqrt{|V|})$

Circuit geometry

[Markov-Shi 05]

Runtime $2^{\text{treewidth}}$ rather than 2^n



Constant-depth planar circuits

Runtime: $2^{O(\sqrt{dn})} < 2^n$

Planar graphs: treewidth = $O(\sqrt{|V|})$

Clifford circuits

Input $|0^n\rangle$, gate set:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix},$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix},$$

$$CZ = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Gottesman-Knill Theorem [Gottesman 97]

Clifford circuits can be simulated efficiently

Stabilizer formalism
[Gottesman 97],
[Aaronson-Gottesman 04]

Clifford circuits

Input $|0^n\rangle$, gate set:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix},$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix},$$

$$CZ = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Gottesman-Knill Theorem [Gottesman 97]

Clifford circuits can be simulated efficiently

Stabilizer formalism
[Gottesman 97],
[Aaronson-Gottesman 04]

Graph state formalism
[Anders-Briegel 05]

Affine space + phase
[Van den Nest 08]

CH form
[Bravyi et al 19]

Clifford circuits

Gottesman-Knill Theorem [Gottesman 97]

Clifford circuits can be simulated efficiently

Apply a gate $O(n)$ [Gottesman 97]

Measure one qubit $O(n^2)$ [Aaronson-Gottesman 04]

Measure all qubits $O(n^3)$ [Aaronson-Gottesman 04]

Clifford circuits

Gottesman-Knill Theorem [Gottesman 97]

Clifford circuits can be simulated efficiently

Apply a gate	$O(n)$	[Gottesman 97]
Measure one qubit	$O(n^2)$	[Aaronson-Gottesman 04]
Measure all qubits	$O(n^3)$	[Aaronson-Gottesman 04]
Measure k qubits	$\tilde{O}(n^2 k^{\omega-2})$	[Gosset-Grier-AK-Schaeffer 20]
Measure all qubits	$\tilde{O}(n^\omega)$	[Gosset-Grier-AK-Schaeffer 20]
	$2 \leq \omega < 2.37\dots$	[Strassen 69], ..., [Alman-Williams 19]

Clifford circuits

Gottesman-Knill Theorem [Gottesman 97]

Clifford circuits can be simulated efficiently

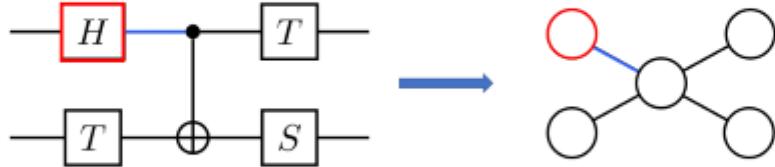
Apply a gate	$O(n)$	[Gottesman 97]
Measure one qubit	$O(n^2)$	[Aaronson-Gottesman 04]
Measure all qubits	$O(n^3)$	[Aaronson-Gottesman 04]
Measure k qubits	$\tilde{O}(n^2 k^{\omega-2})$	[Gosset-Grier-AK-Schaeffer 20]
Measure all qubits	$\tilde{O}(n^\omega)$	[Gosset-Grier-AK-Schaeffer 20]
Any number of CZ gates	$\tilde{O}(n^\omega)$	[Gosset-Grier-AK-Schaeffer 20]
	$2 \leq \omega < 2.37\dots$	[Strassen 69], ..., [Alman-Williams 19]

Circuit geometry + Cliffords = ?

Circuit geometry

[Markov-Shi 05]

Runtime $2^{\text{treewidth}}$ rather than 2^n



Planar graphs: $\text{treewidth} = O(\sqrt{|V|})$

Clifford circuits

Input $|0^n\rangle$, gate set:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix},$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix},$$

$$CZ = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Gottesman-Knill Theorem [Gottesman 97]

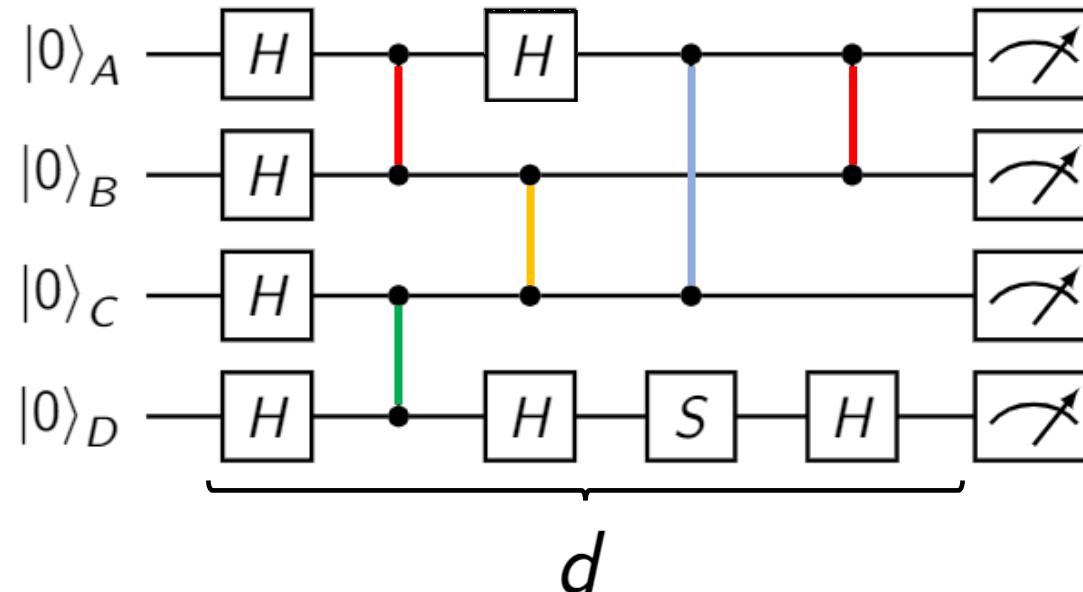
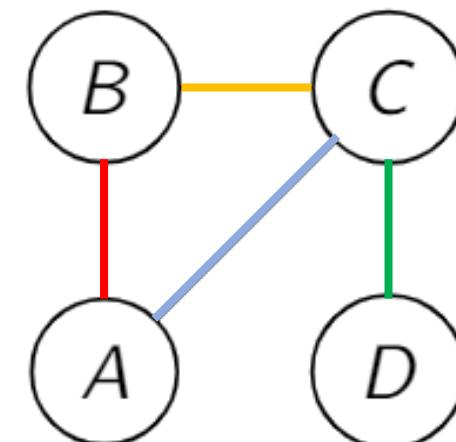
Clifford circuits can be simulated efficiently

Stabilizer formalism

[Gottesman 97],

[Aaronson-Gottesman 04]

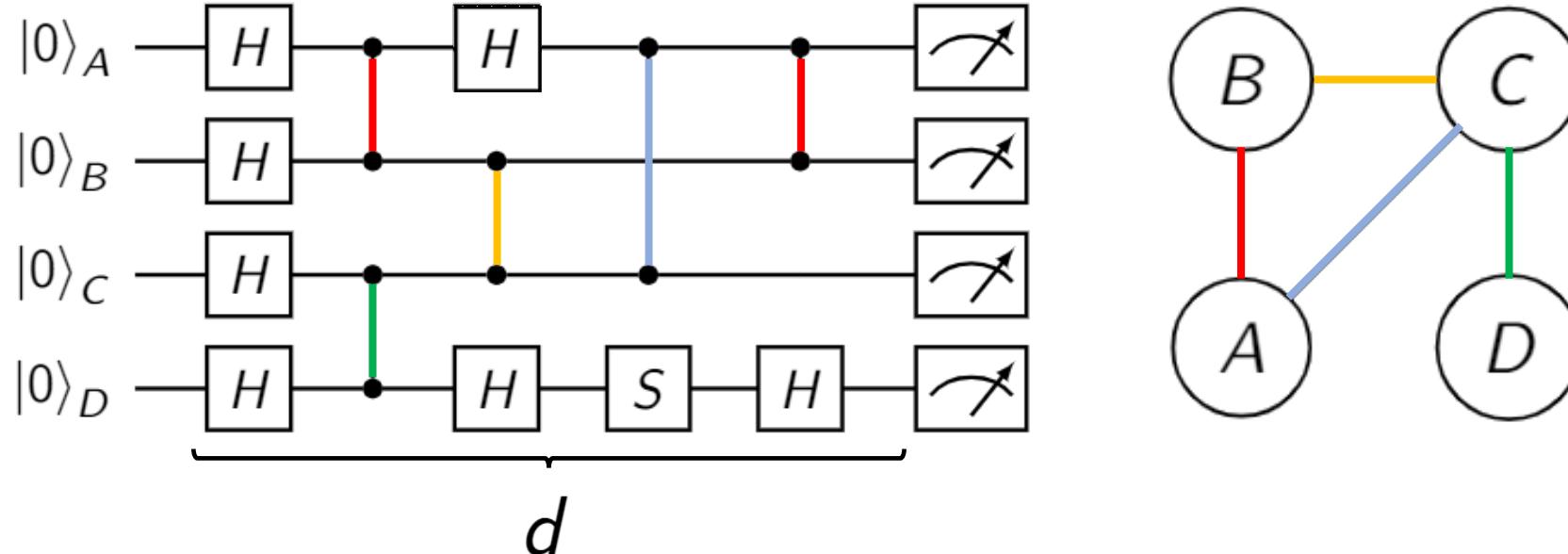
Planar Clifford circuits



Planar Clifford circuits

Theorem

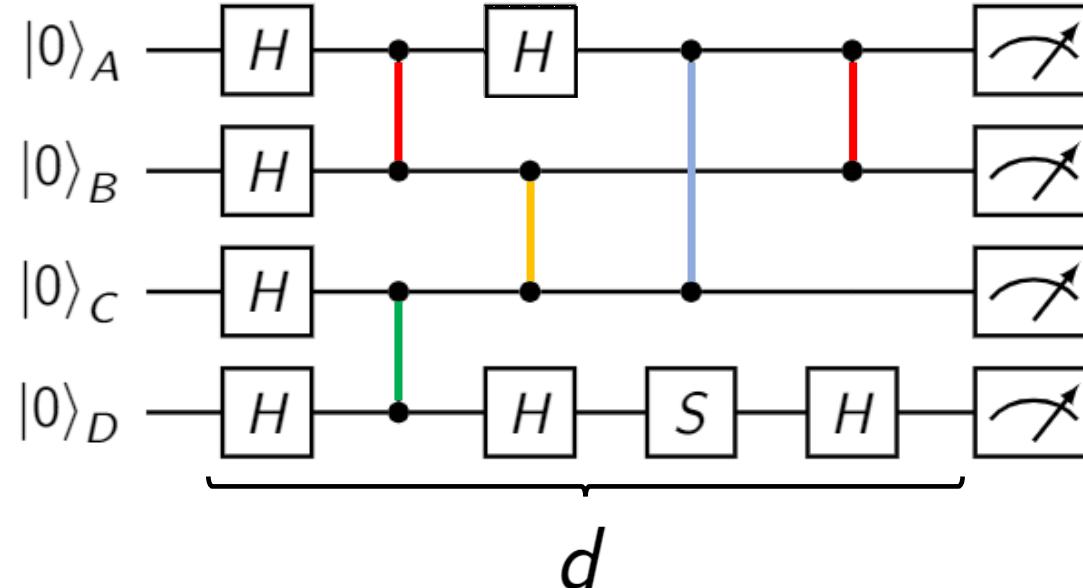
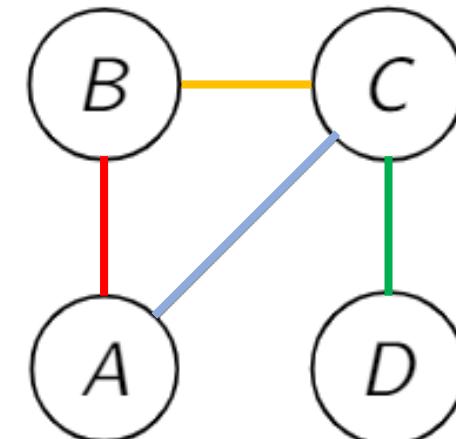
If CZ gates of a Clifford circuit act only on edges of a planar graph, we can sample from the output distribution in time $\tilde{O}(n^{\omega/2}d^\omega)$



Planar Clifford circuits

Theorem

If CZ gates of a Clifford circuit act only on edges of a planar graph, we can sample from the output distribution in time $\tilde{O}(n^{\omega/2}d^\omega)$



Naive

[Aaronson-Gottesman 04]

For $d = O(1)$: $\tilde{O}(n^{\omega/2}) < \tilde{O}(n^\omega) < O(n^3)$

Graph states

Given a graph G ,

$$|G\rangle = \prod_{ab \in E(G)} CZ_{ab} |+\rangle^{\otimes n}$$

Graph states

Given a graph G ,

$$|G\rangle = \prod_{ab \in E(G)} CZ_{ab} |+\rangle^{\otimes n}$$

Graph state simulation problem

Input: Graph G , Pauli bases $P_v \in \{X, Y, Z\}$ for each v

Task: Sample $z \in \{0,1\}^n$ from

$$\Pr[z] = |\langle z | U_{\text{bases}} | G \rangle|^2$$

Grid graphs

[Raussendorf-Briegel 01] (MBQC)

Adaptive arbitrary measurements on grid graph states: Universal

Adaptive Pauli measurements on grid graph states: Clifford circuits

Graph state simulation problem

Input: Graph G , Pauli bases $P_\nu \in \{X, Y, Z\}$ for each ν

Task: Sample $z \in \{0,1\}^n$ from

$$\Pr[z] = |\langle z | U_{\text{bases}} | G \rangle|^2$$

Grid graphs

Graph state simulation problem on $\sqrt{n} \times \sqrt{n}$ grid graph

[Bravyi-Gosset-König 18]

Quantum algorithm: constant-depth

Classical algorithm: must have at least log-depth

Grid graphs

Graph state simulation problem on $\sqrt{n} \times \sqrt{n}$ grid graph

[Bravyi-Gosset-König 18]

Quantum algorithm: constant-depth

Classical algorithm: must have at least log-depth

Goal: Study gate complexity

Gate complexity of graph state simulation

Quantum

Gate complexity = $O(|E| + |V|)$

$O(n)$ for planar graphs

$$|G\rangle = \prod_{ab \in E(G)} CZ_{ab} |+\rangle^{\otimes n}$$

Gate complexity of graph state simulation

Quantum

Gate complexity = $O(|E| + |V|)$

$O(n)$ for planar graphs

$$|G\rangle = \prod_{ab \in E(G)} CZ_{ab} |+\rangle^{\otimes n}$$

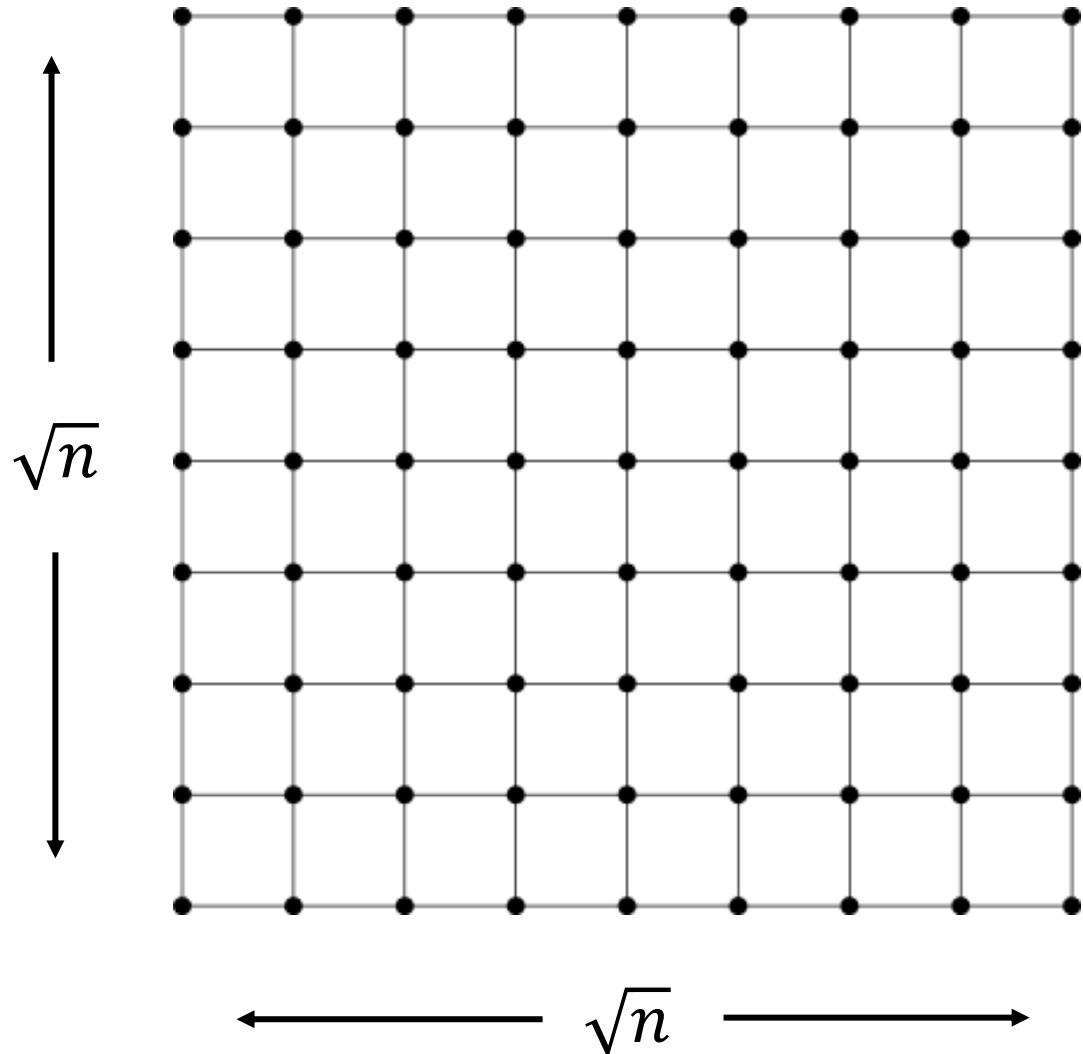
Theorem

The graph state simulation problem can be solved classically in time $\tilde{O}(n^{\omega/2})$ for planar graphs

	Naive	[Aaronson-Gottesman 04]
$\tilde{O}(n^{\omega/2})$	$<$	$\tilde{O}(n^\omega)$
	$<$	$O(n^3)$

Warmup

Naïve approach

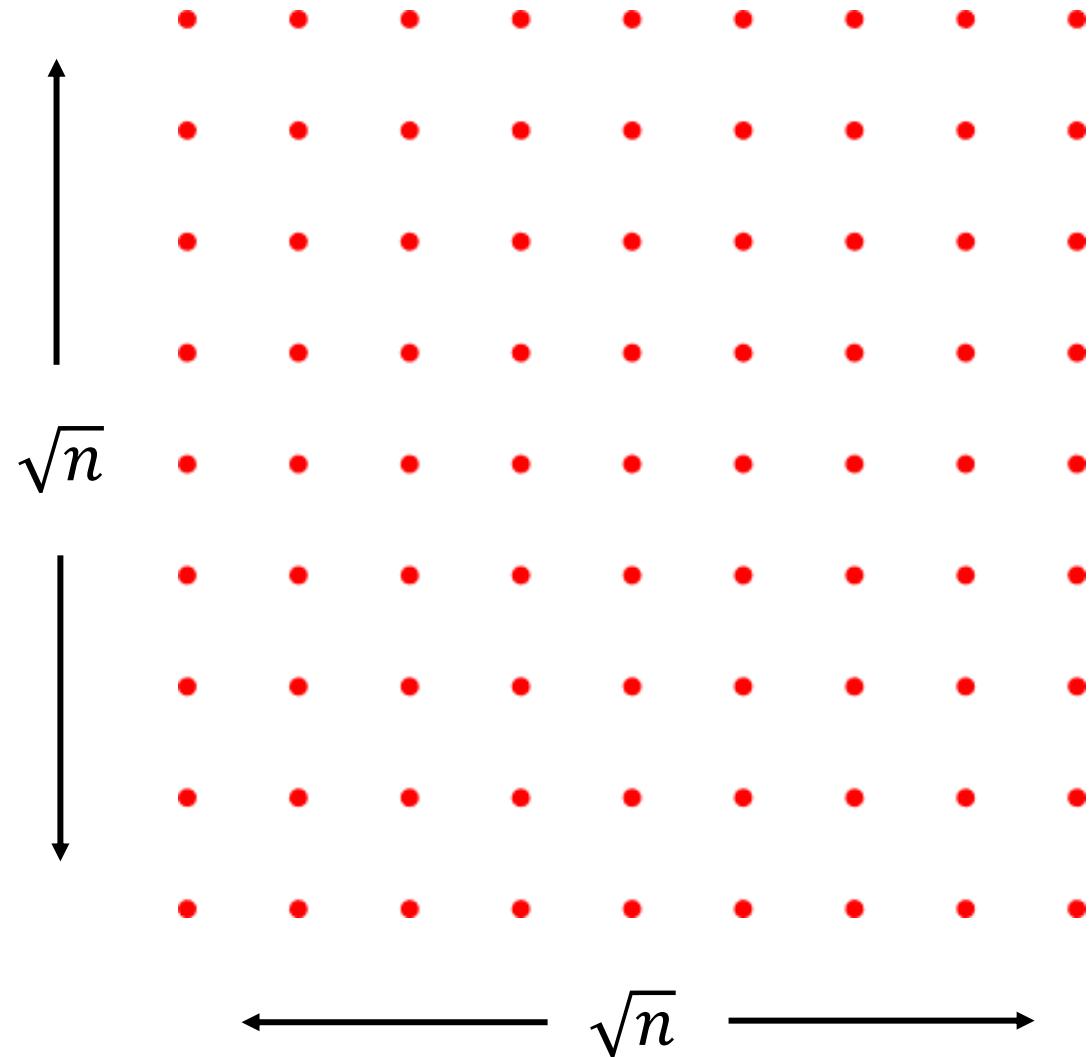


Warmup

Naïve approach

Initialize n qubits

$O(n^\omega)$



Warmup

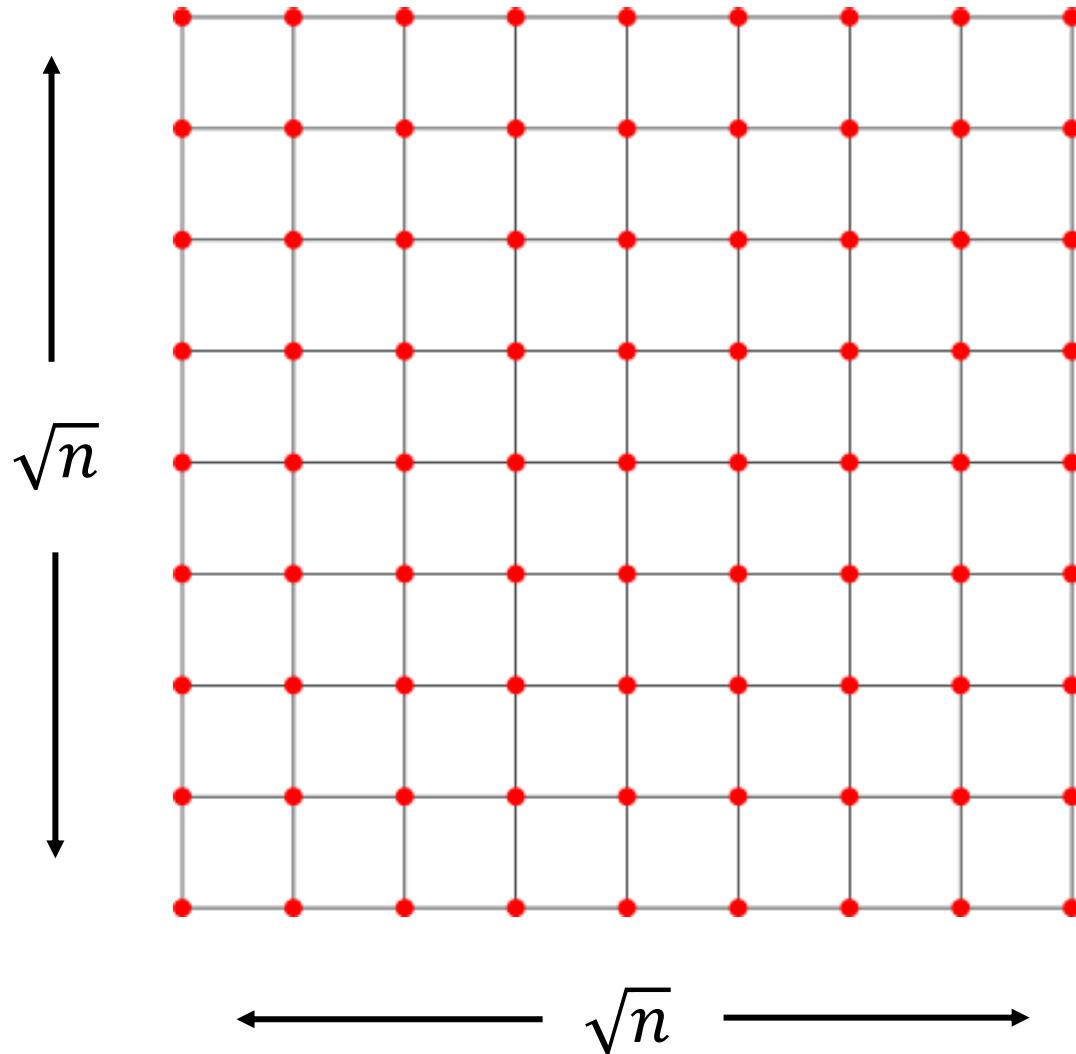
Naïve approach

Initialize n qubits

Apply CZ gates

$$\tilde{O}(n^\omega)$$

$$\tilde{O}(n^\omega)$$



Warmup

Naïve approach

Initialize n qubits

Apply CZ gates

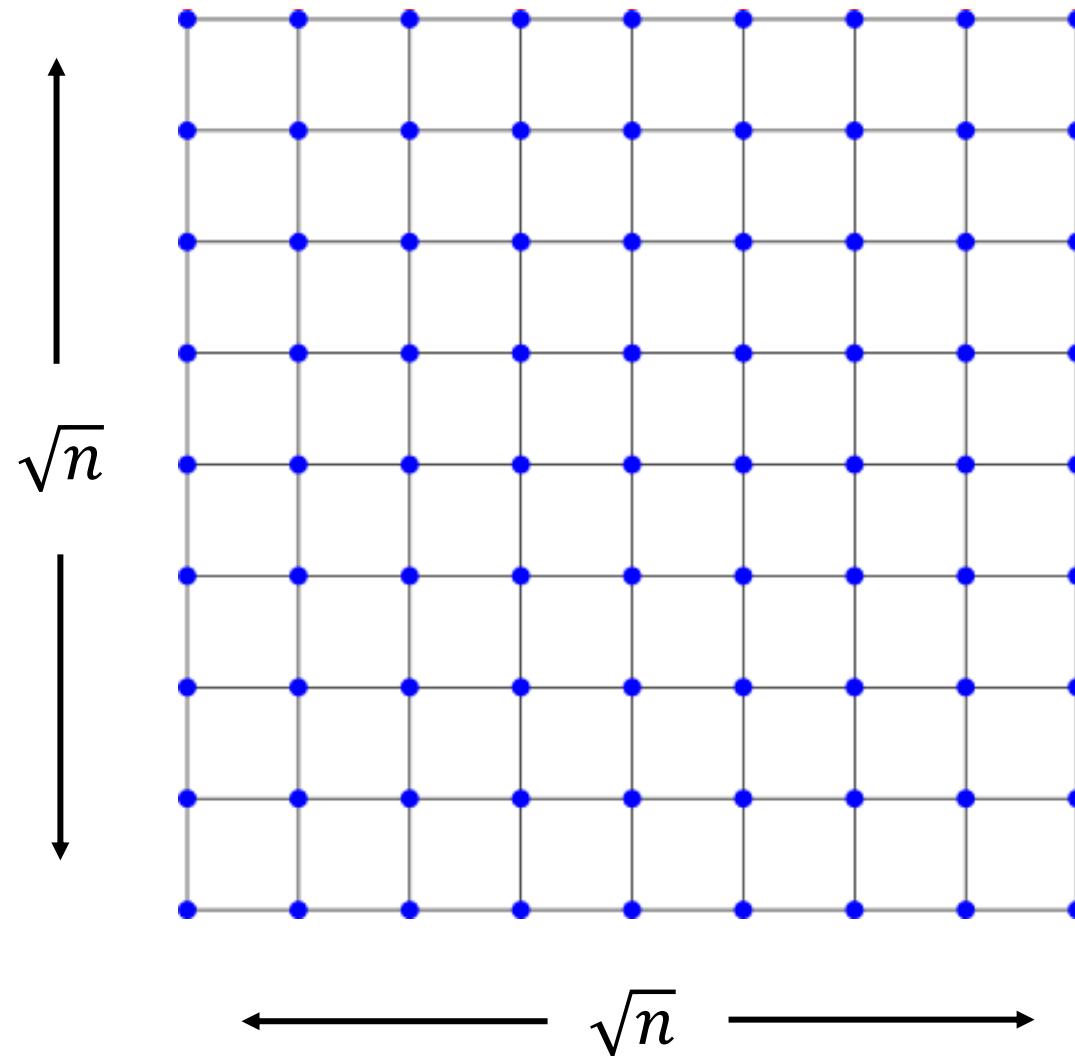
Measure all qubits

Total runtime: $\tilde{O}(n^\omega)$

$\tilde{O}(n^\omega)$

$\tilde{O}(n^\omega)$

$\tilde{O}(n^\omega)$



Warmup

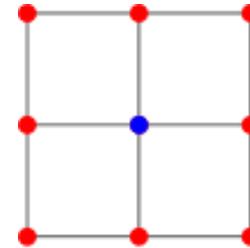
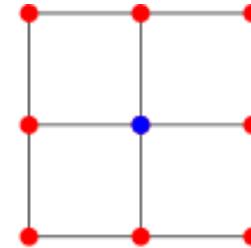
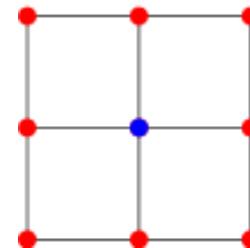
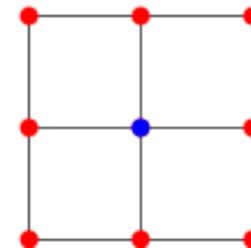
$$\# \text{ } \textcolor{red}{\bullet} = O(\sqrt{n})$$

Improved approach

Recursion on subgrids

$$4 \cdot T(n/4)$$

$$\sqrt{n}$$



$$\longleftrightarrow \sqrt{n} \longleftrightarrow \sqrt{n}$$

Warmup

$$\# \text{ } \textcolor{red}{\bullet} = O(\sqrt{n})$$

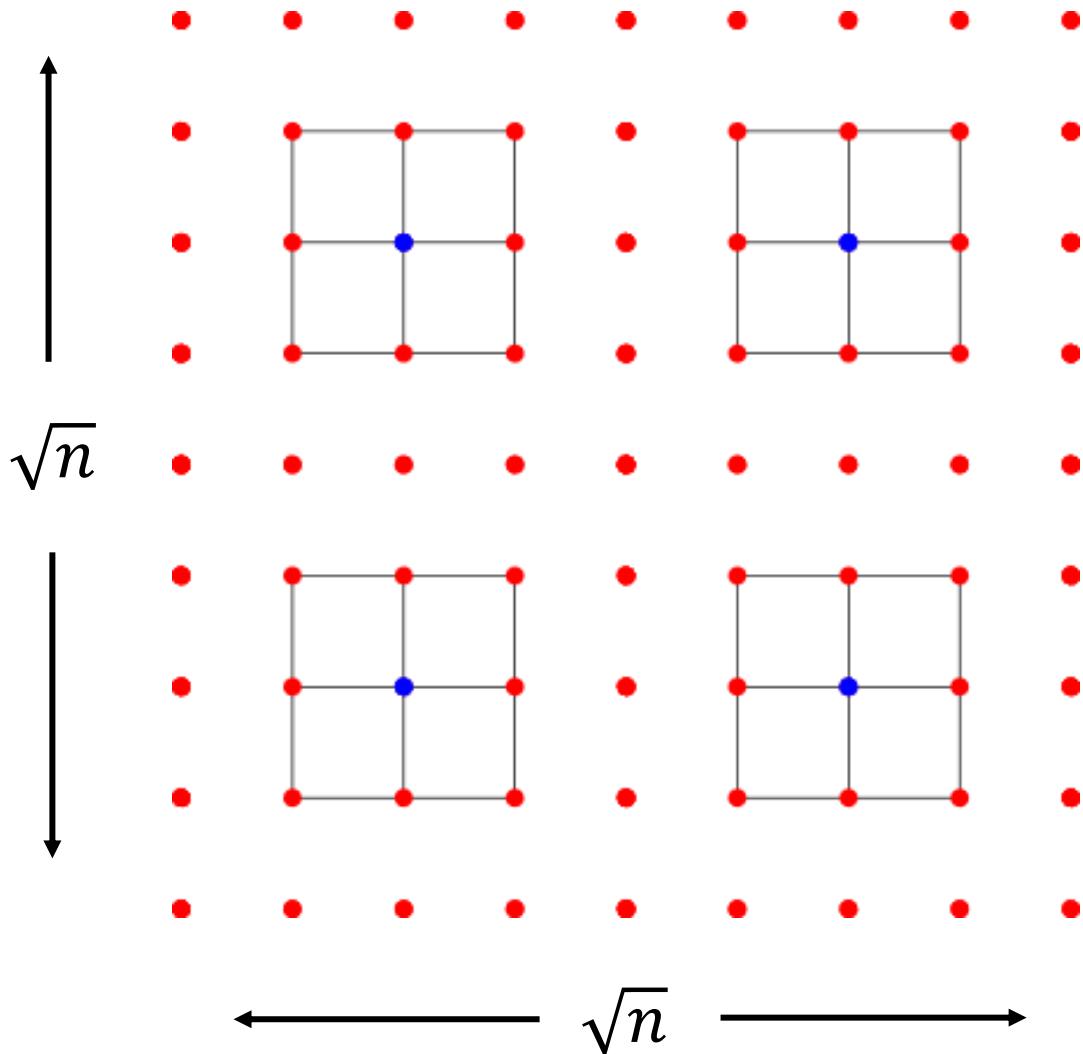
Improved approach

Recursion on subgrids

Initialize remaining qubits

$$4 \cdot T(n/4)$$

$$\tilde{O}(n^{\omega/2})$$



Warmup

$$\# \text{ red circles} = O(\sqrt{n})$$

Improved approach

Recursion on subgrids

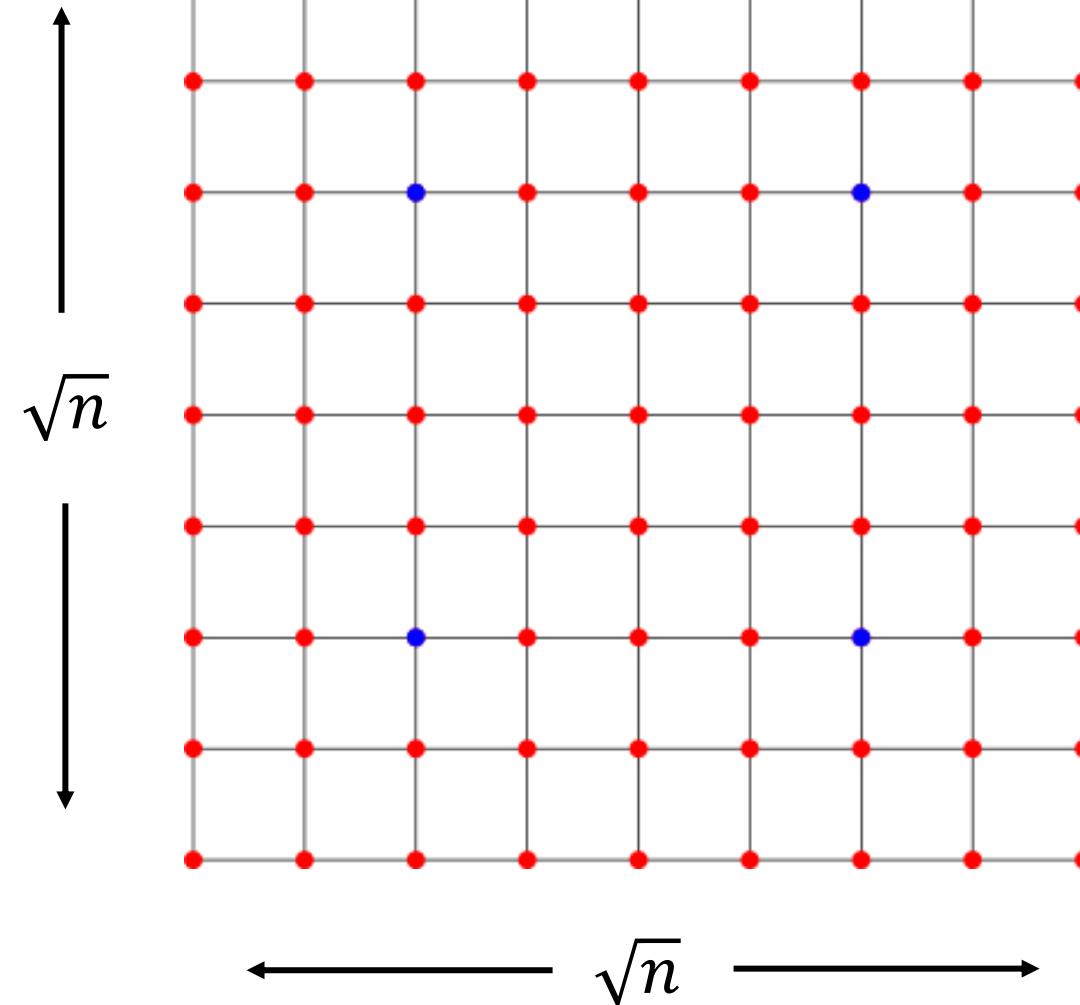
Initialize remaining qubits

Apply gates

$$4 \cdot T(n/4)$$

$$\tilde{O}(n^{\omega/2})$$

$$\tilde{O}(n^{\omega/2})$$



Warmup

$$\# \text{ red circles} = O(\sqrt{n})$$

Improved approach

Recursion on subgrids

Initialize remaining qubits

Apply gates

Measure

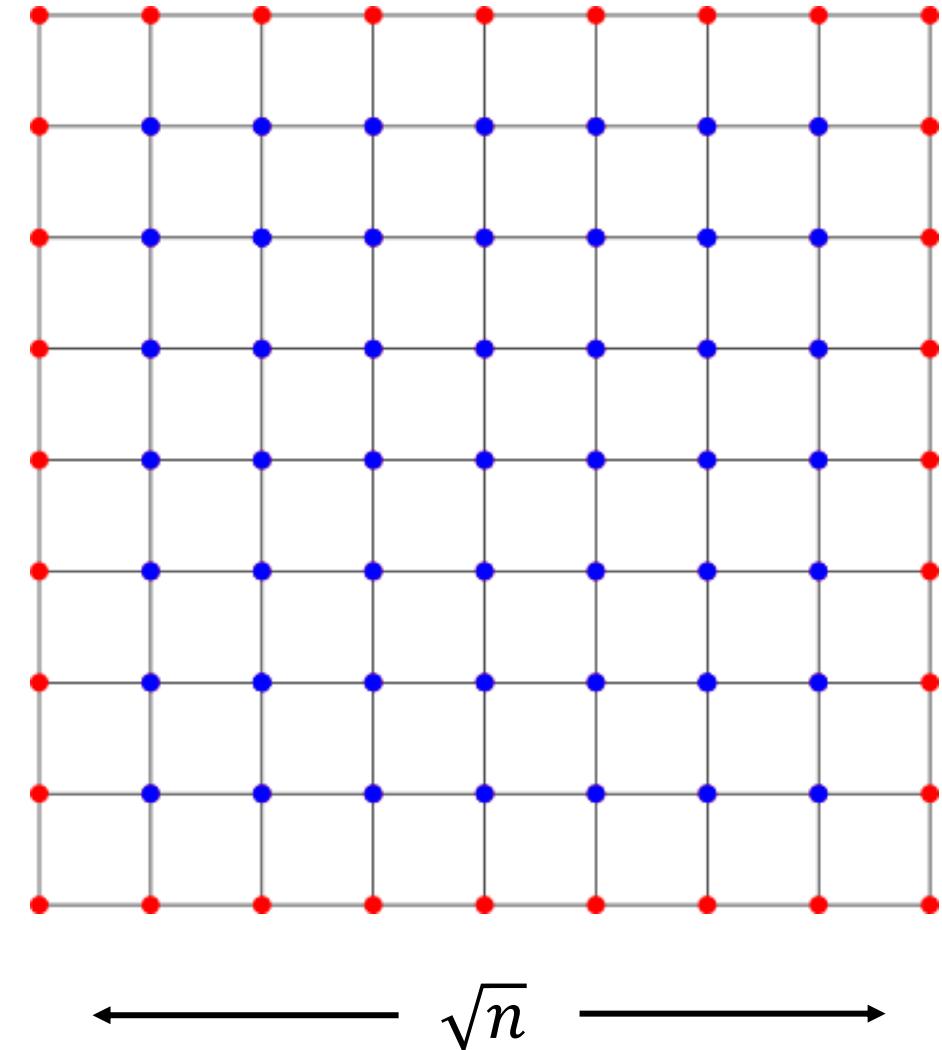
$$4 \cdot T(n/4)$$

$$\tilde{O}(n^{\omega/2})$$

$$\tilde{O}(n^{\omega/2})$$

$$\tilde{O}(n^{\omega/2})$$

\uparrow
 \downarrow



Warmup

Improved approach

Recursion on subgrids

$$4 \cdot T(n/4)$$

Initialize remaining qubits

$$\tilde{O}(n^{\omega/2})$$

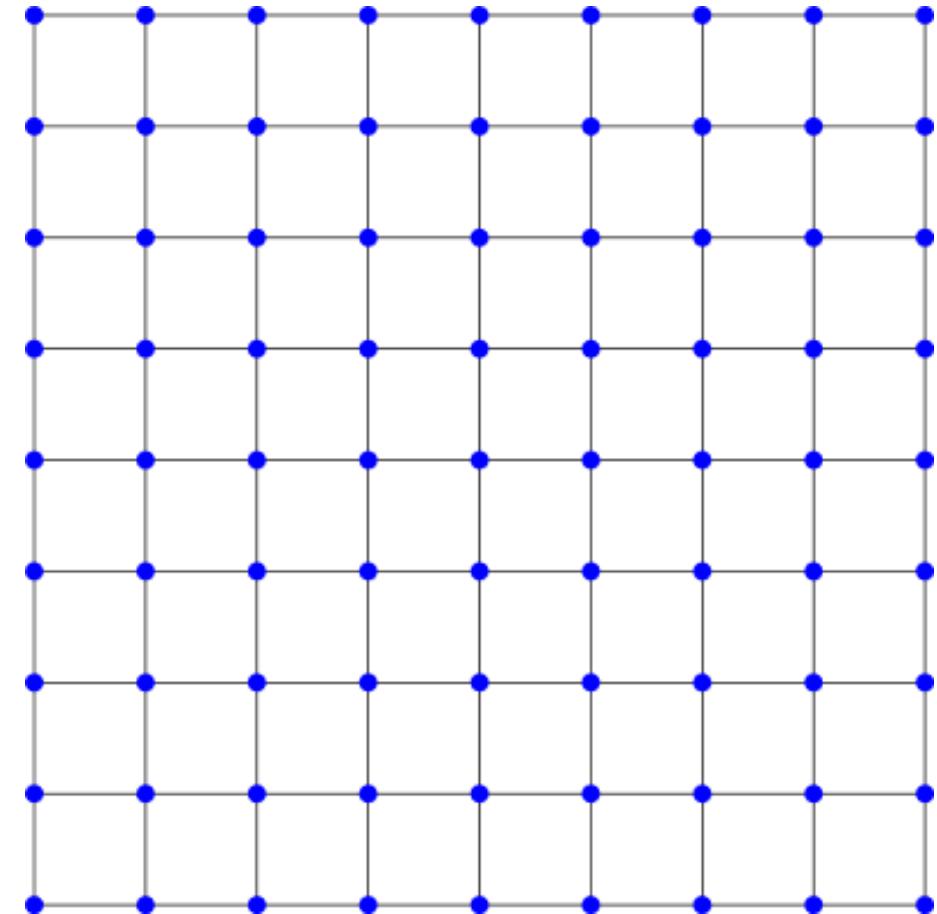
Apply gates

$$\tilde{O}(n^{\omega/2})$$

Measure

$$\tilde{O}(n^{\omega/2})$$

$$\text{Total runtime: } 4 \cdot T(n/4) + \tilde{O}(n^{\omega/2}) = \tilde{O}(n^{\omega/2})$$



Key idea: Schedule operations to minimize qubits stored in memory

Warmup

Nested dissection

[George 73], [Lipton-Rose-Tarjan 79], [Alon-Yuster 10]

Improved approach

Recursion on subgrids

$$4 \cdot T(n/4)$$

Initialize remaining qubits

$$\tilde{O}(n^{\omega/2})$$

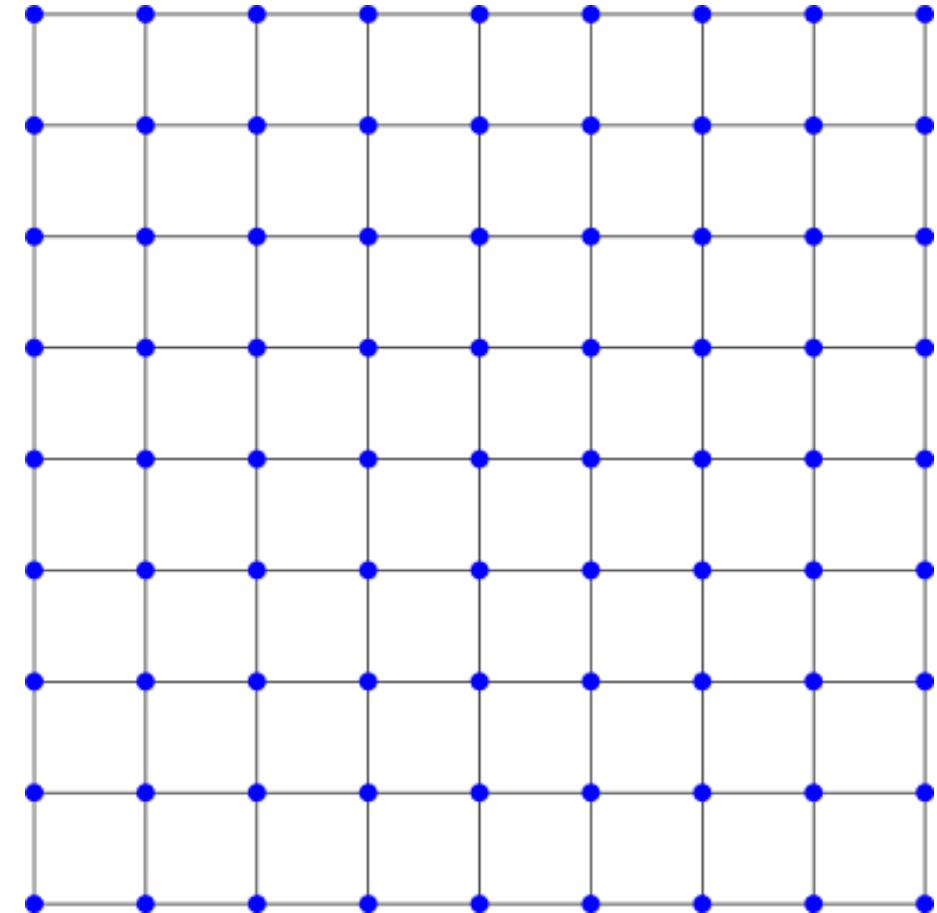
Apply gates

$$\tilde{O}(n^{\omega/2})$$

Measure

$$\tilde{O}(n^{\omega/2})$$

$$\text{Total runtime: } 4 \cdot T(n/4) + \tilde{O}(n^{\omega/2}) = \tilde{O}(n^{\omega/2})$$

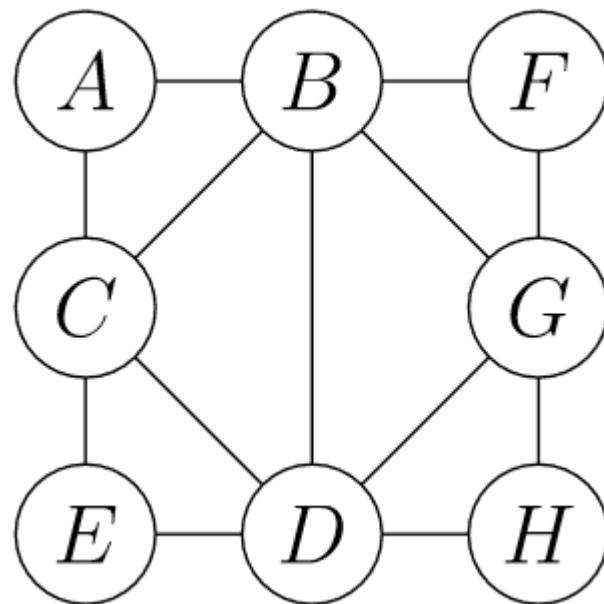
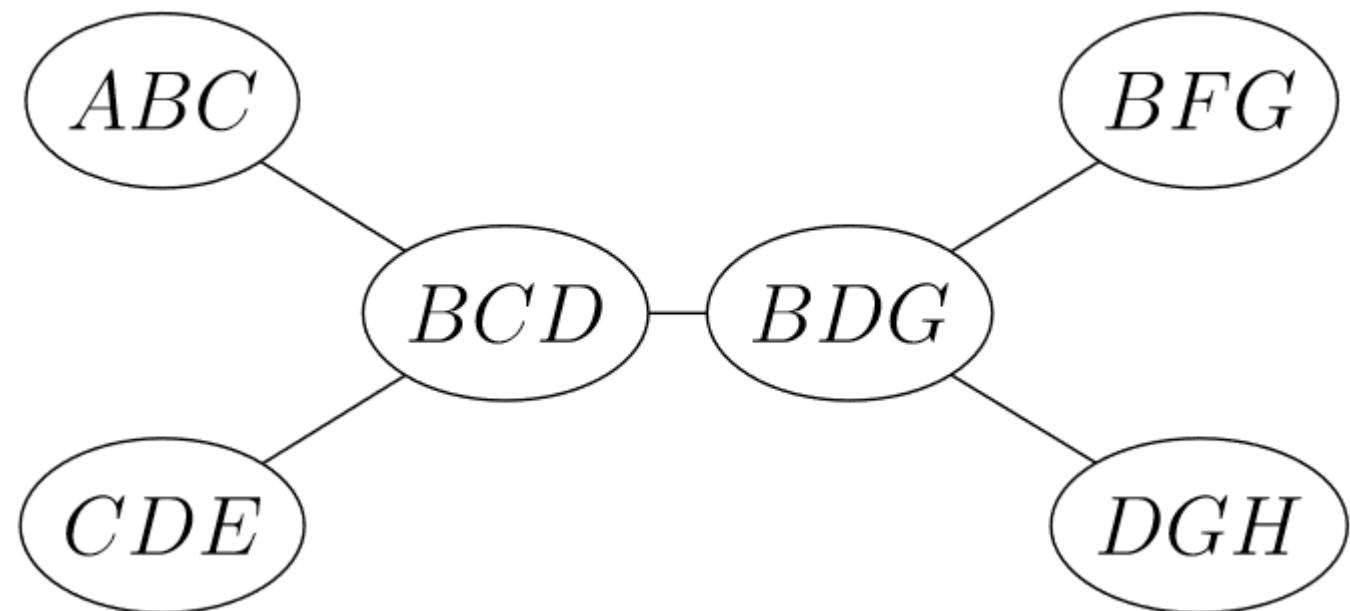


Key idea: Schedule operations to minimize qubits stored in memory

Tree decompositions

Set of *bags* $B_i \subseteq V(G)$ arranged in a tree such that

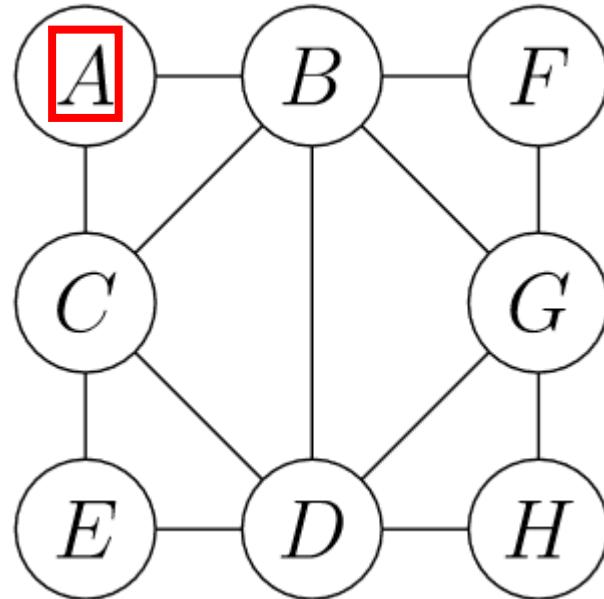
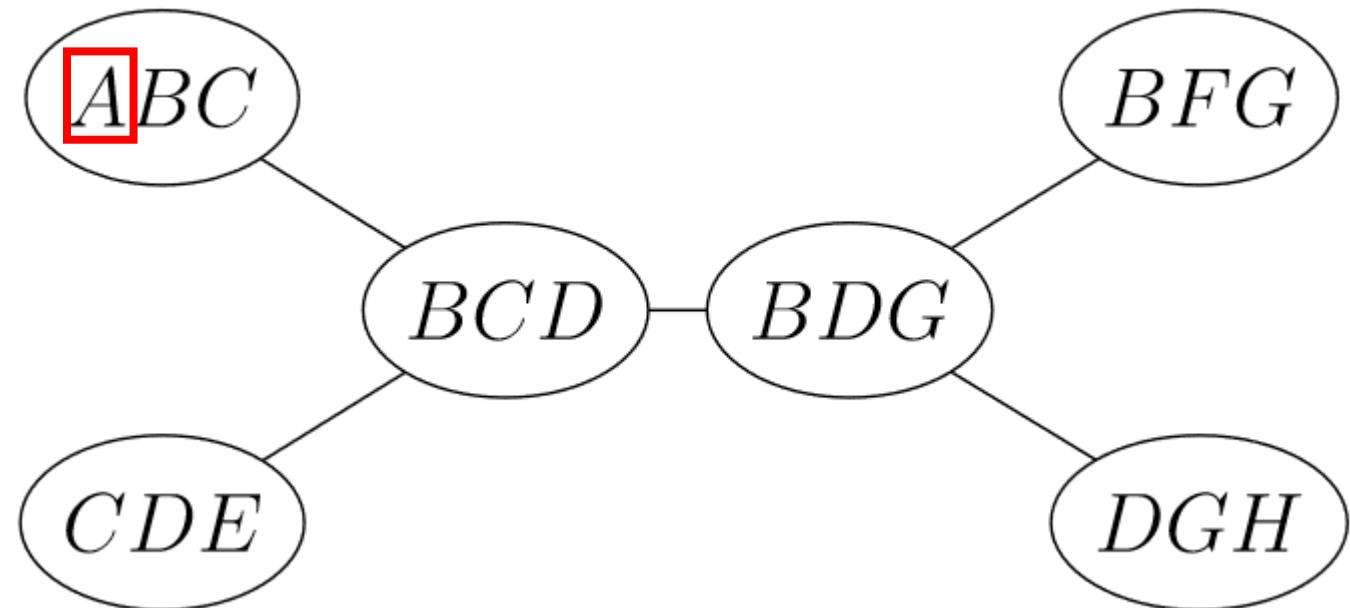
- Each vertex appears somewhere
- Each edge appears somewhere
- Bags containing a given vertex form a connected subtree



Tree decompositions

Set of *bags* $B_i \subseteq V(G)$ arranged in a tree such that

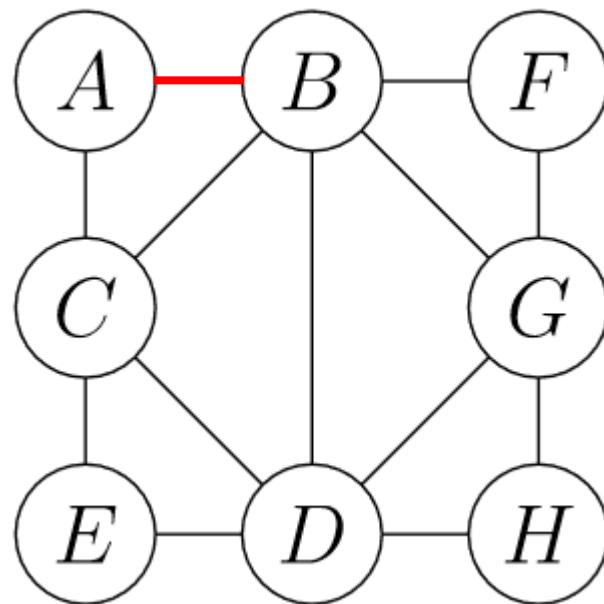
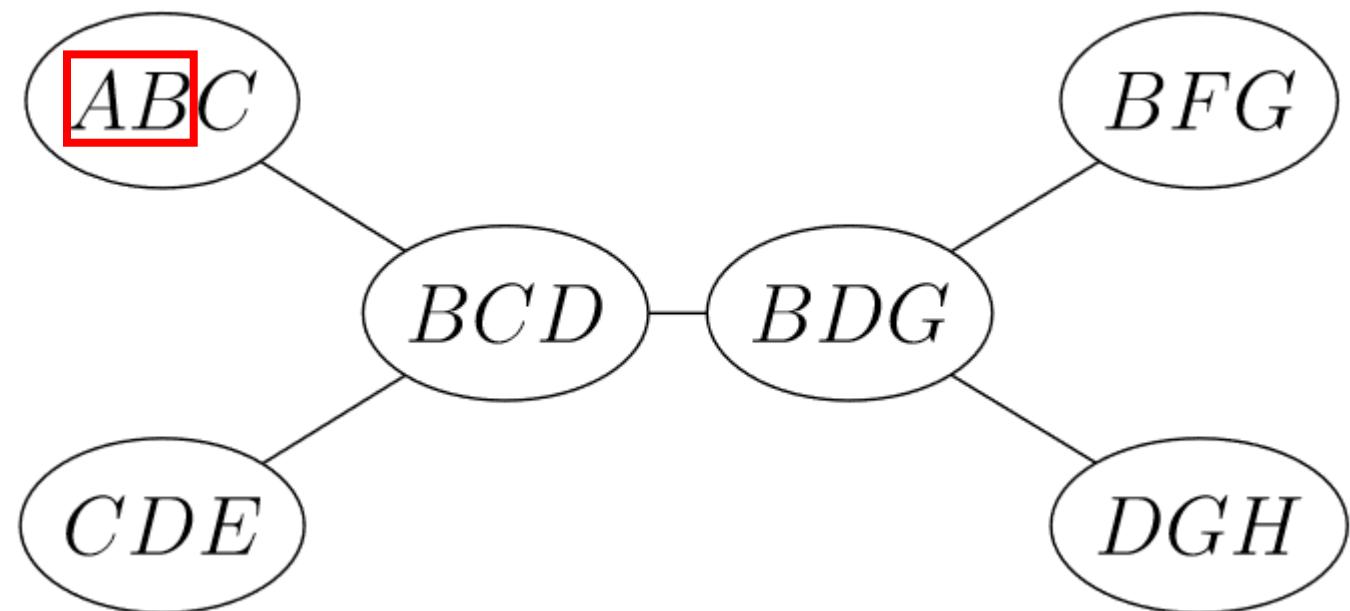
- Each vertex appears somewhere
- Each edge appears somewhere
- Bags containing a given vertex form a connected subtree



Tree decompositions

Set of *bags* $B_i \subseteq V(G)$ arranged in a tree such that

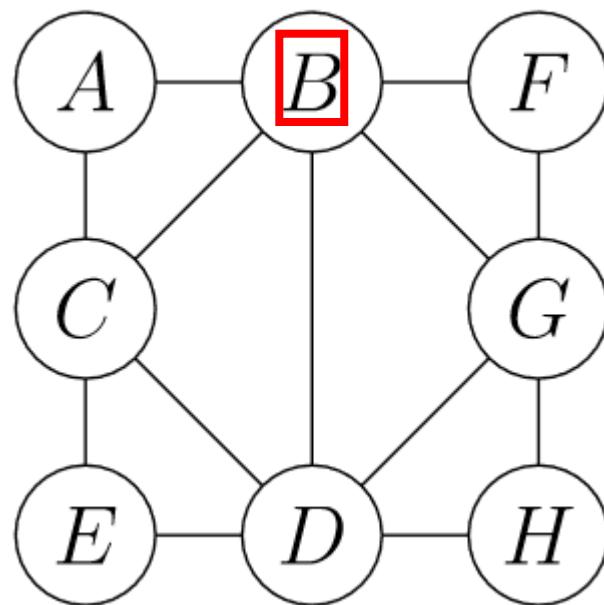
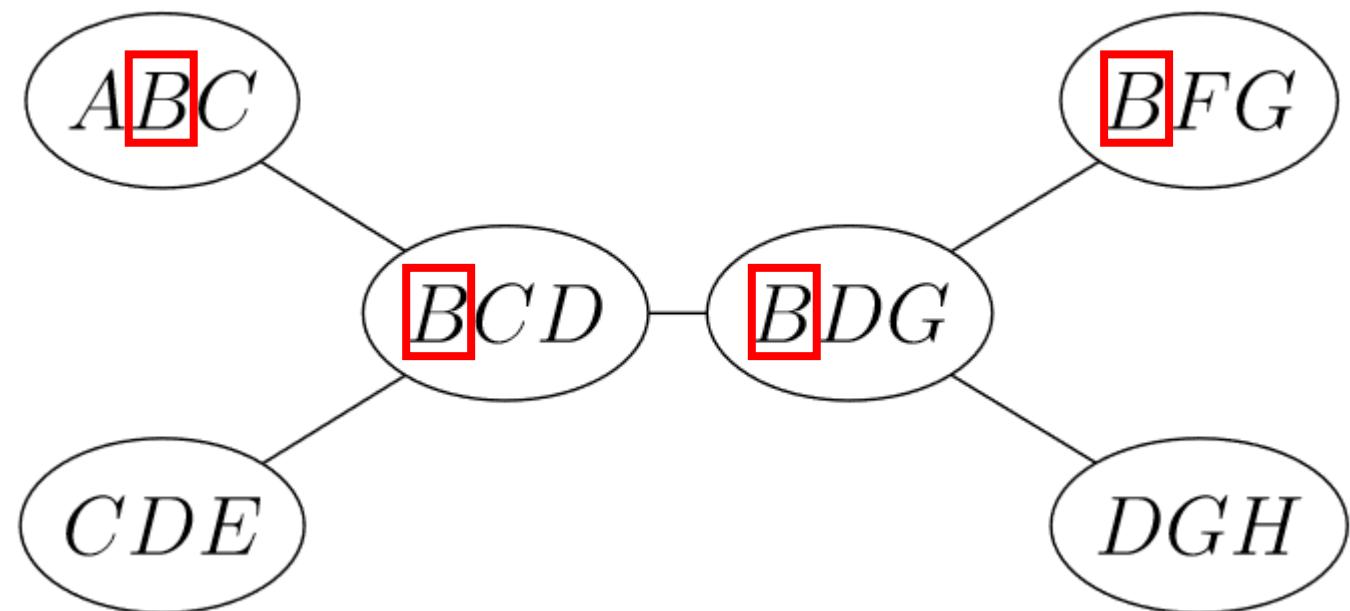
- Each vertex appears somewhere
- Each edge appears somewhere
- Bags containing a given vertex form a connected subtree



Tree decompositions

Set of *bags* $B_i \subseteq V(G)$ arranged in a tree such that

- Each vertex appears somewhere
- Each edge appears somewhere
- Bags containing a given vertex form a connected subtree



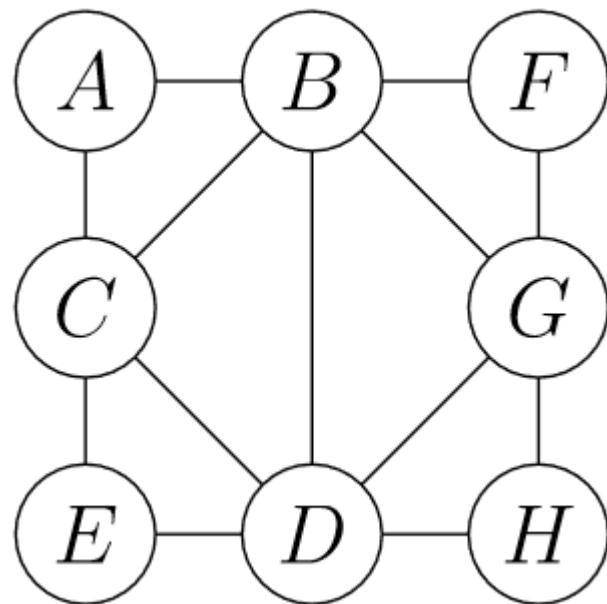
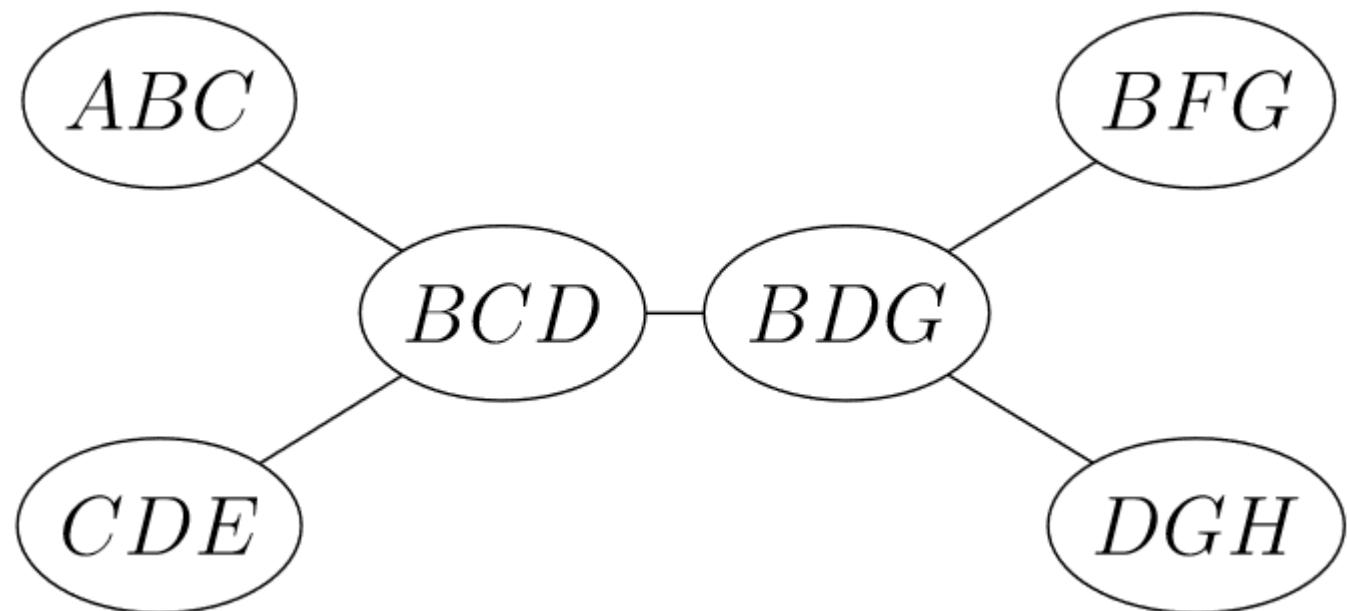
Tree decompositions

Width of decomposition T

$$|T| = \max_i |B_i| - 1$$

Treewidth of graph

$$t(G) = \min |T|$$



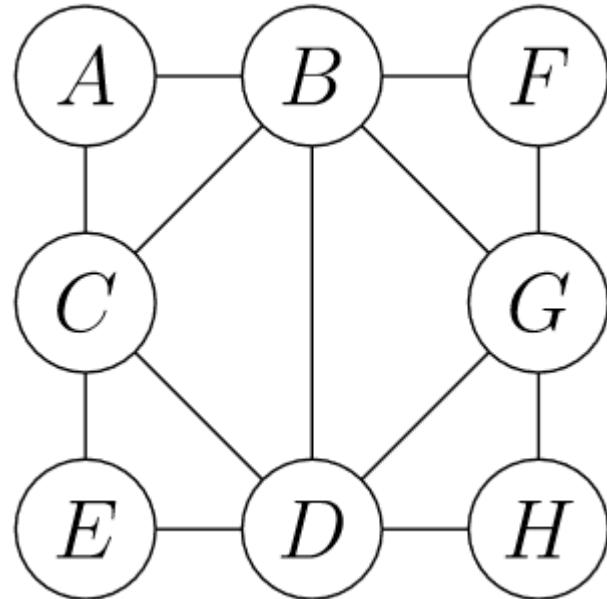
Tree decompositions

Width of decomposition T

$$|T| = \max_i |B_i| - 1$$

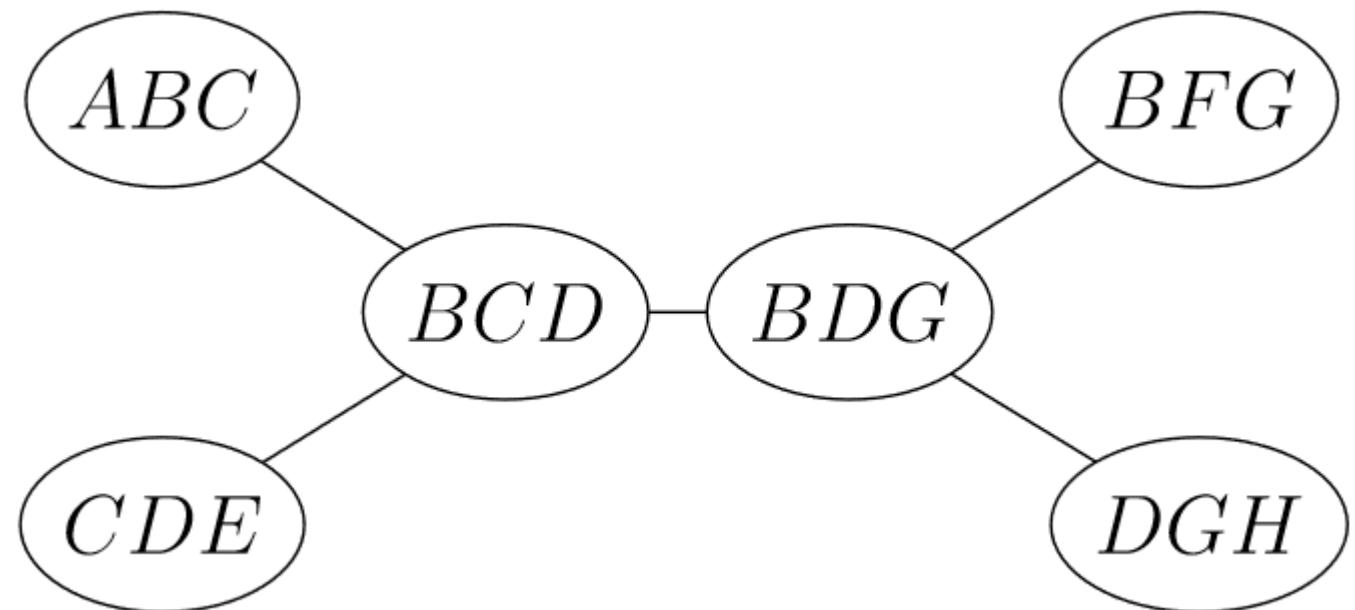
Treewidth of graph

$$t(G) = \min |T|$$



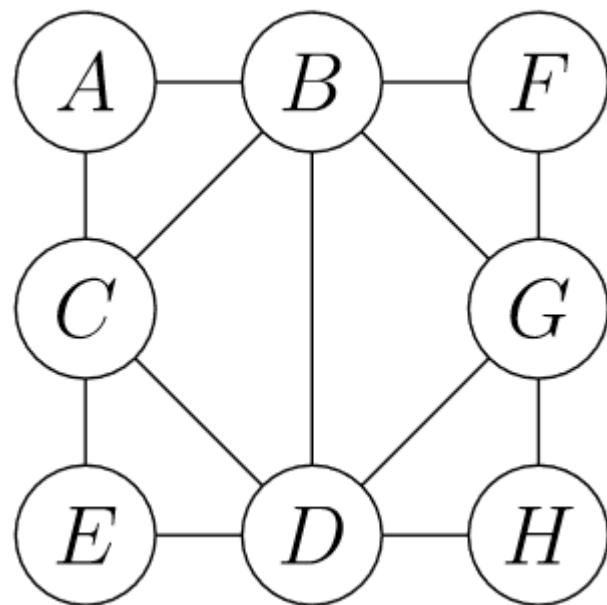
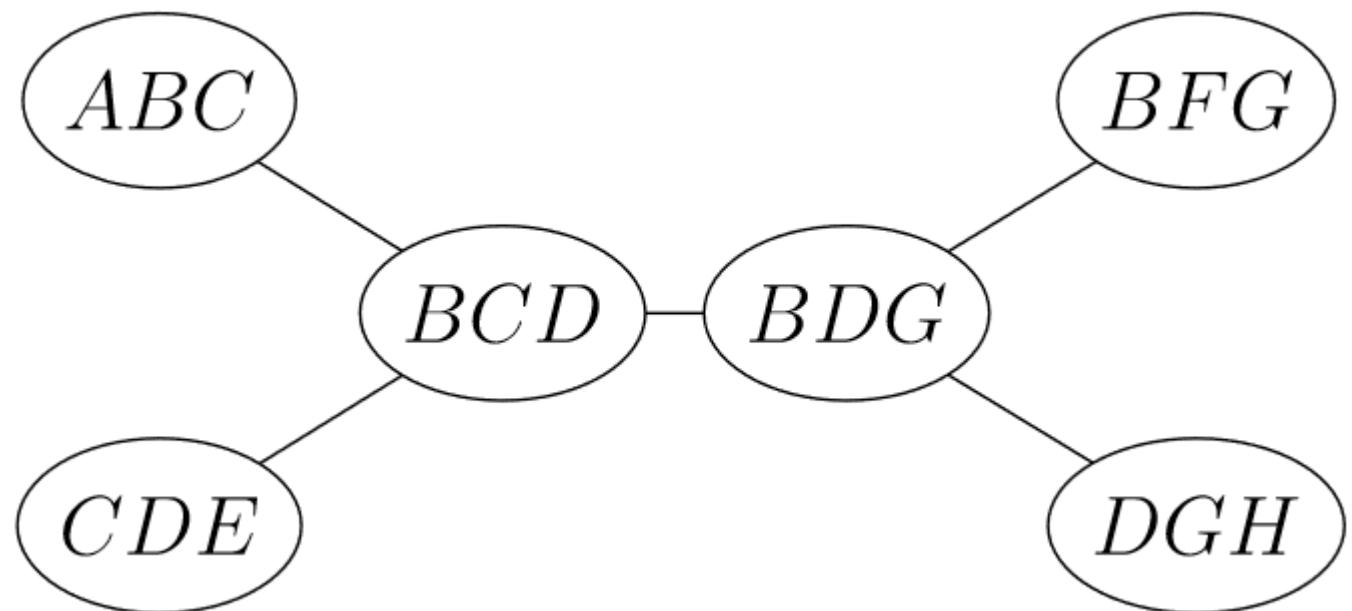
Planar graphs

$$t(G) = O(\sqrt{|V|})$$

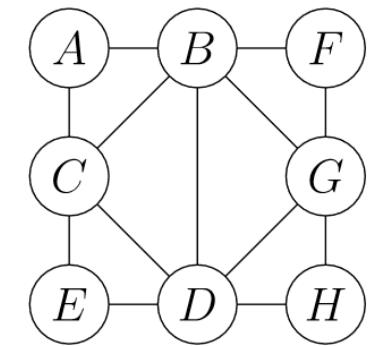
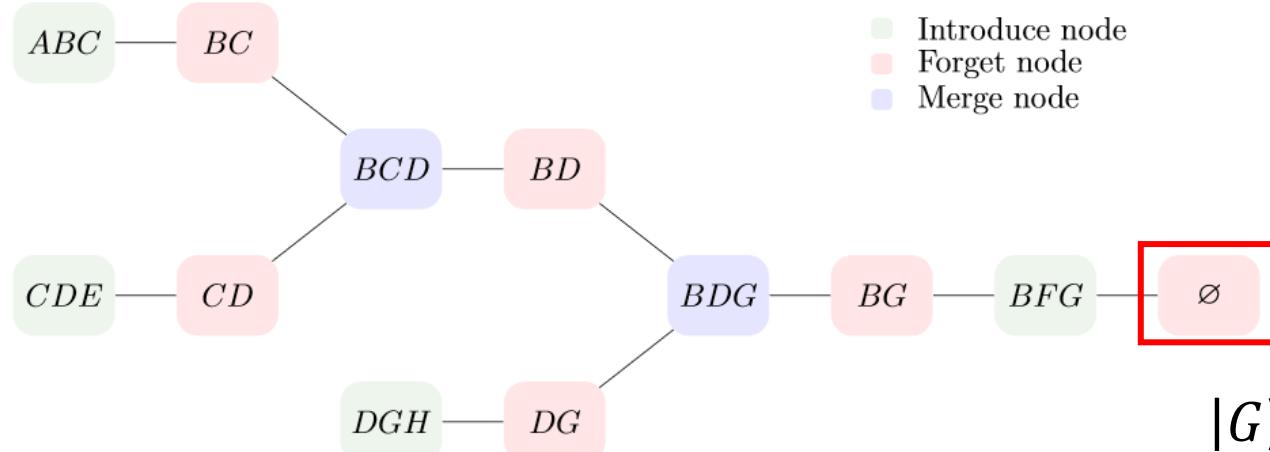
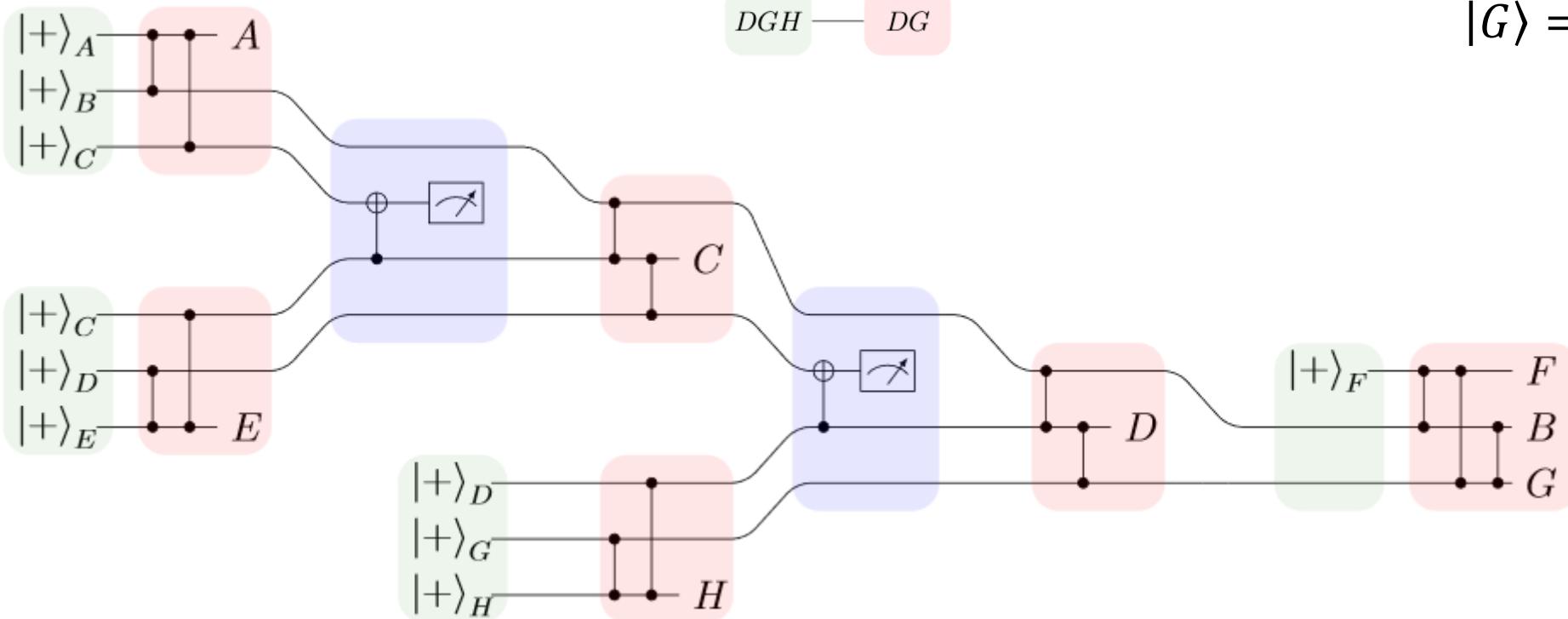


Tree decompositions

Idea: Use tree decomposition to derive schedule

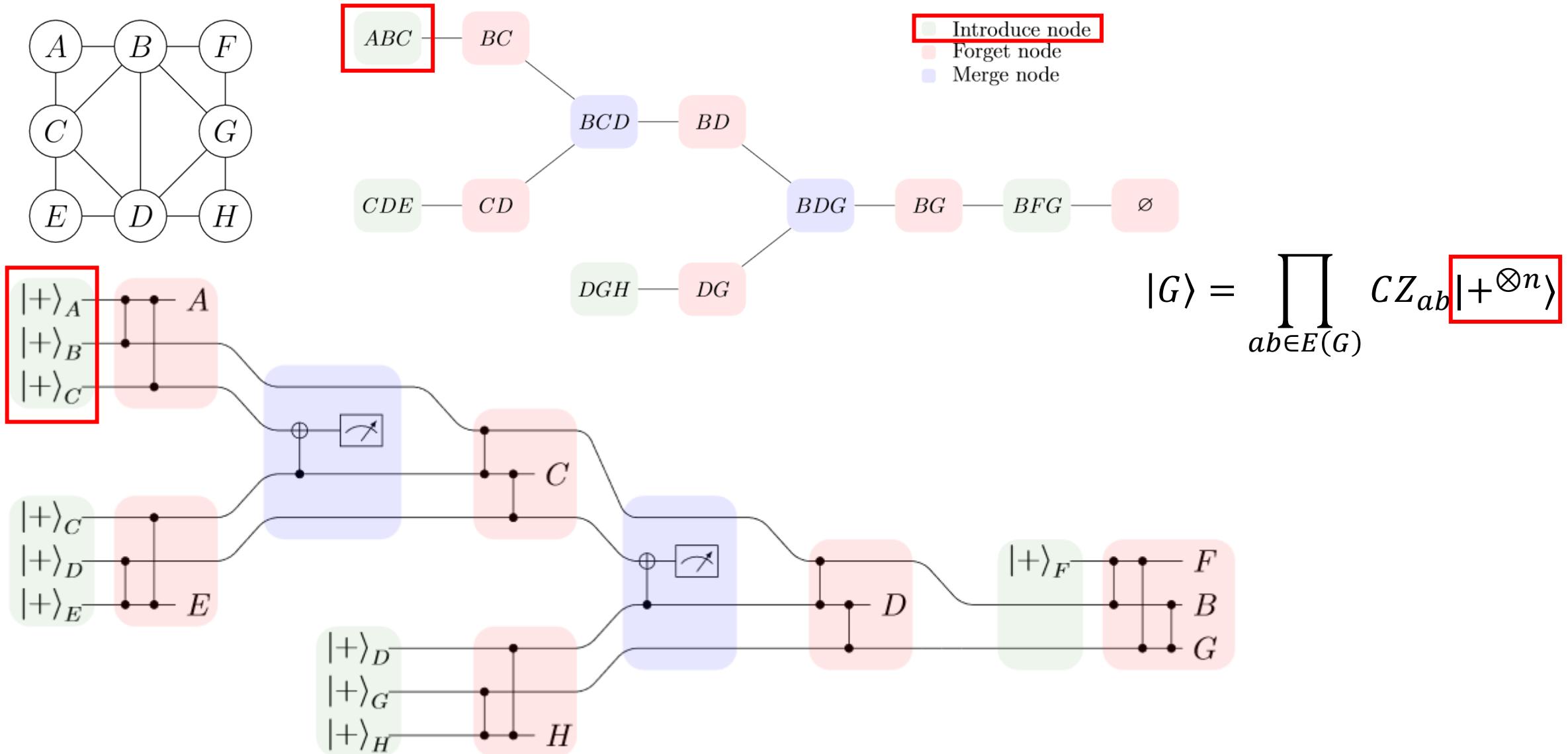


Tree decomposition \mapsto circuit

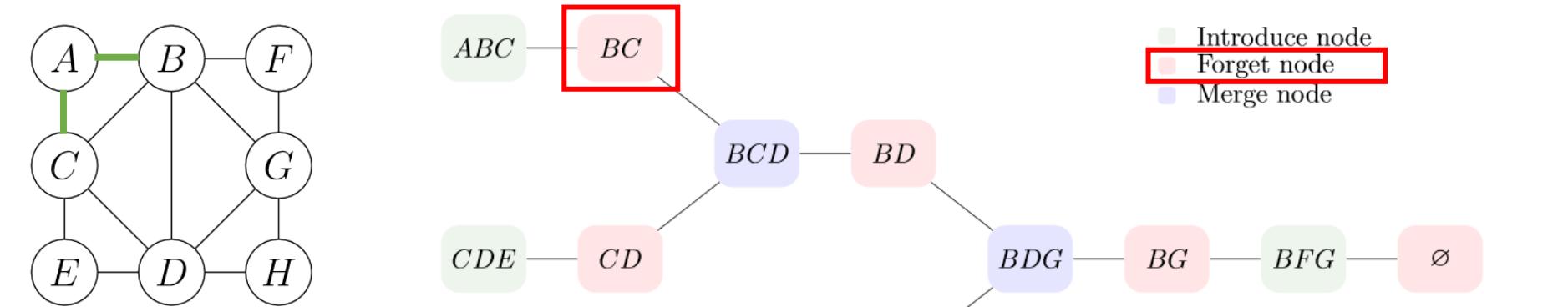
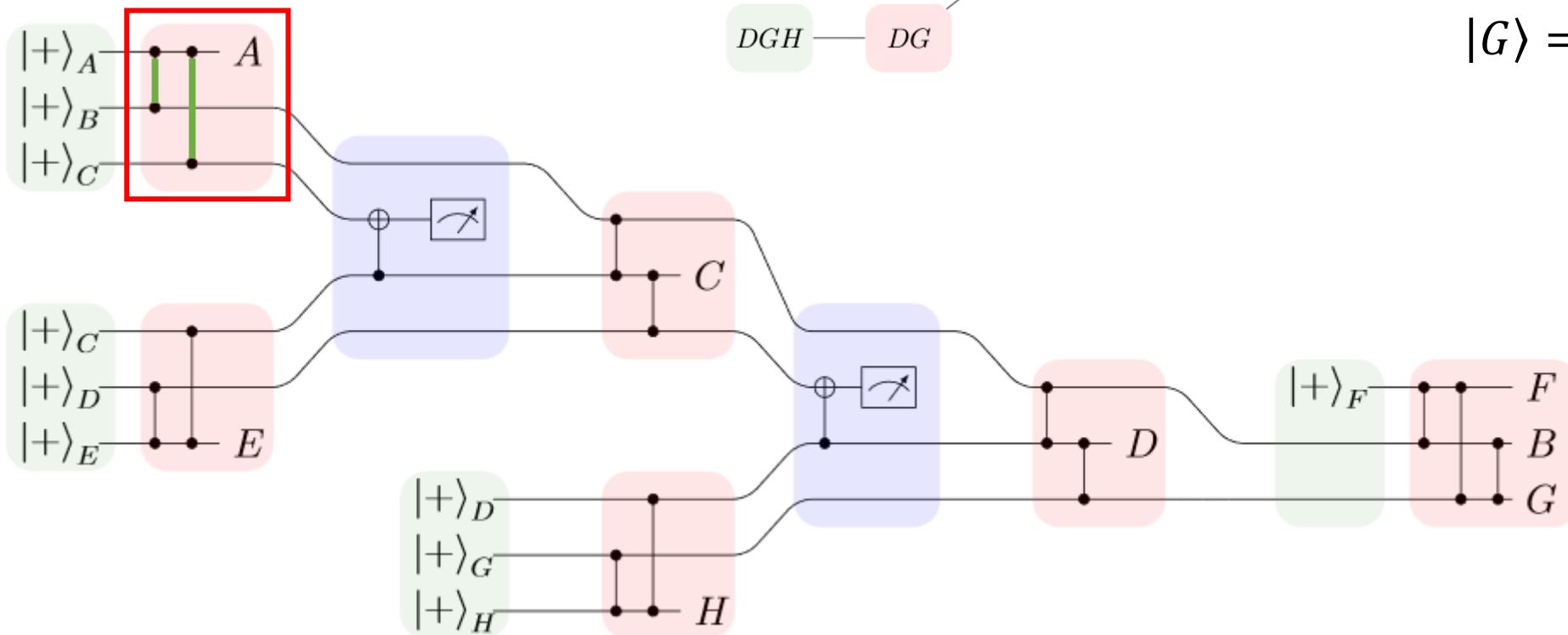


$$|G\rangle = \prod_{ab \in E(G)} CZ_{ab} |+\rangle^{\otimes n}$$

Tree decomposition \mapsto circuit

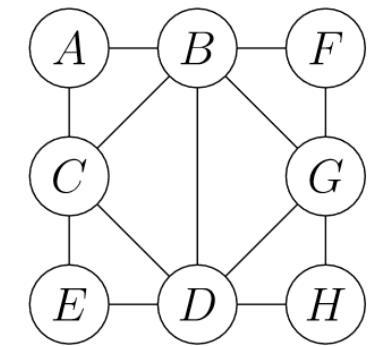
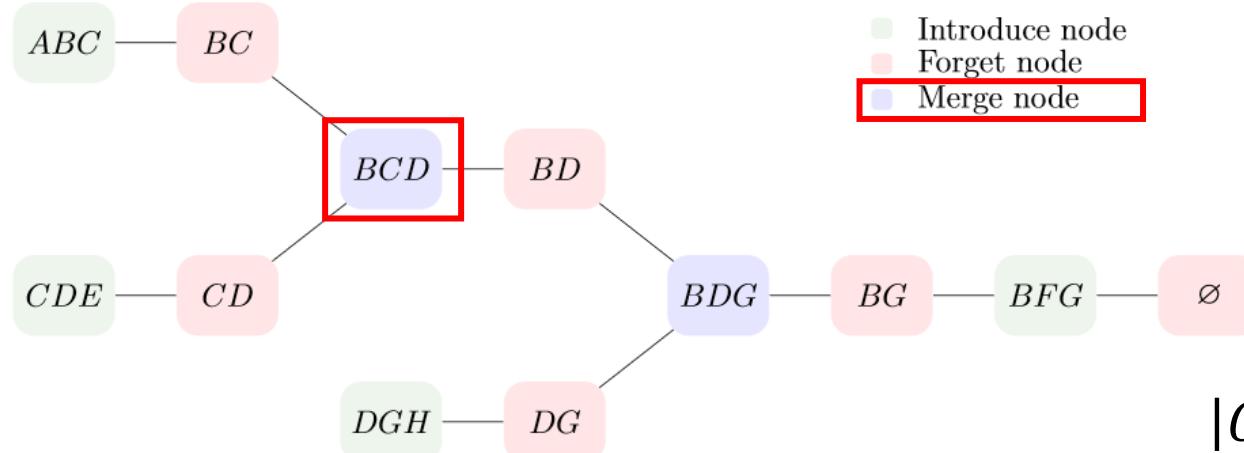
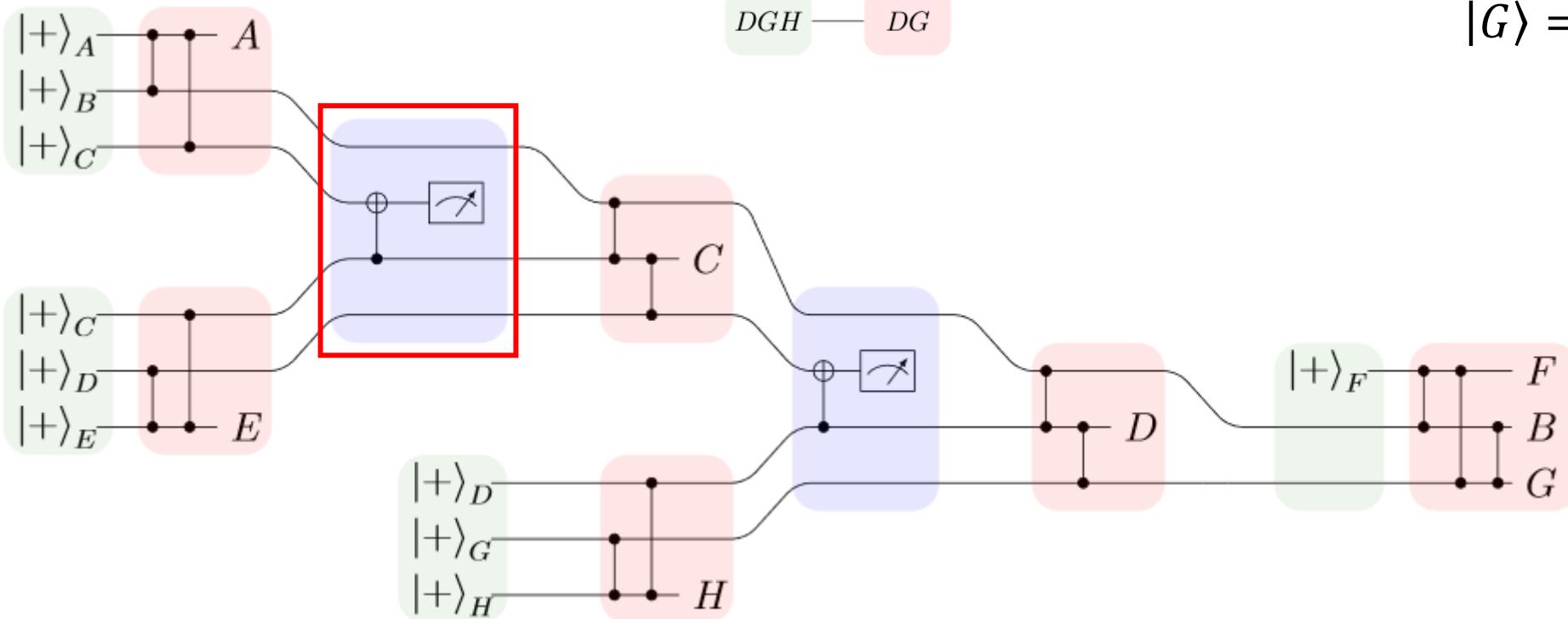


Tree decomposition \mapsto circuit



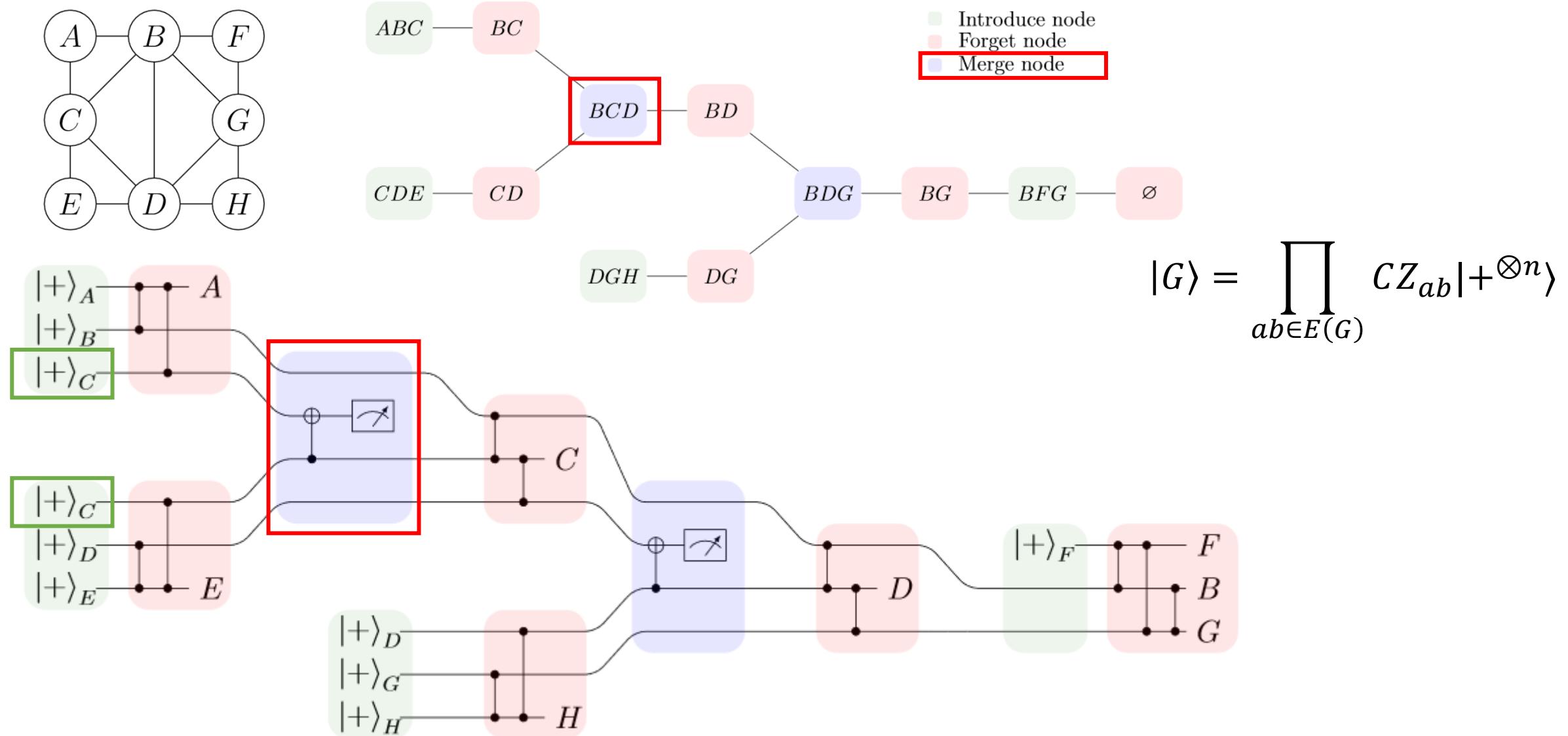
$$|G\rangle = \prod_{ab \in E(G)} CZ_{ab} |+\rangle^{\otimes n}$$

Tree decomposition \mapsto circuit

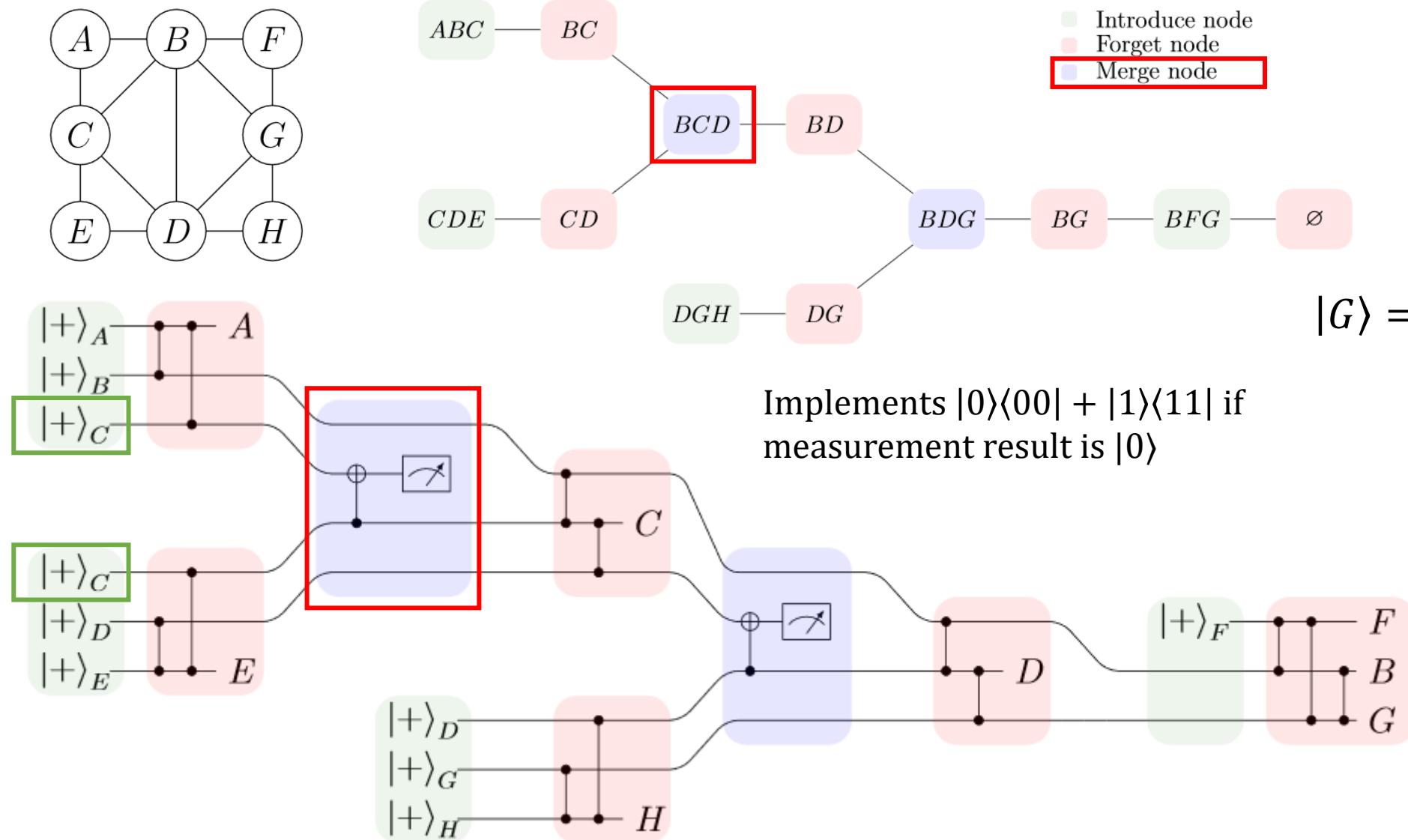


$$|G\rangle = \prod_{ab \in E(G)} CZ_{ab} |+\rangle^{\otimes n}$$

Tree decomposition \mapsto circuit

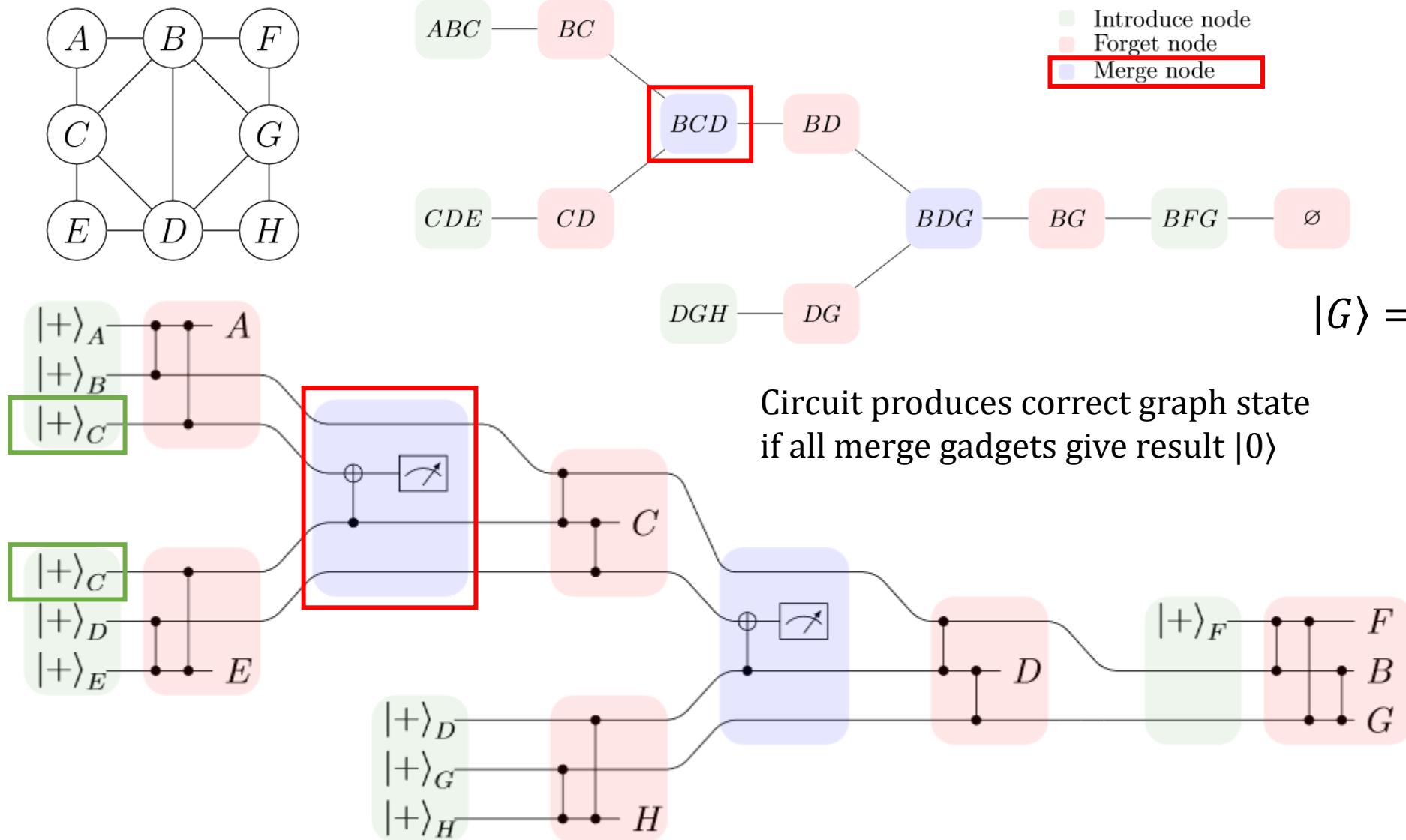


Tree decomposition \mapsto circuit



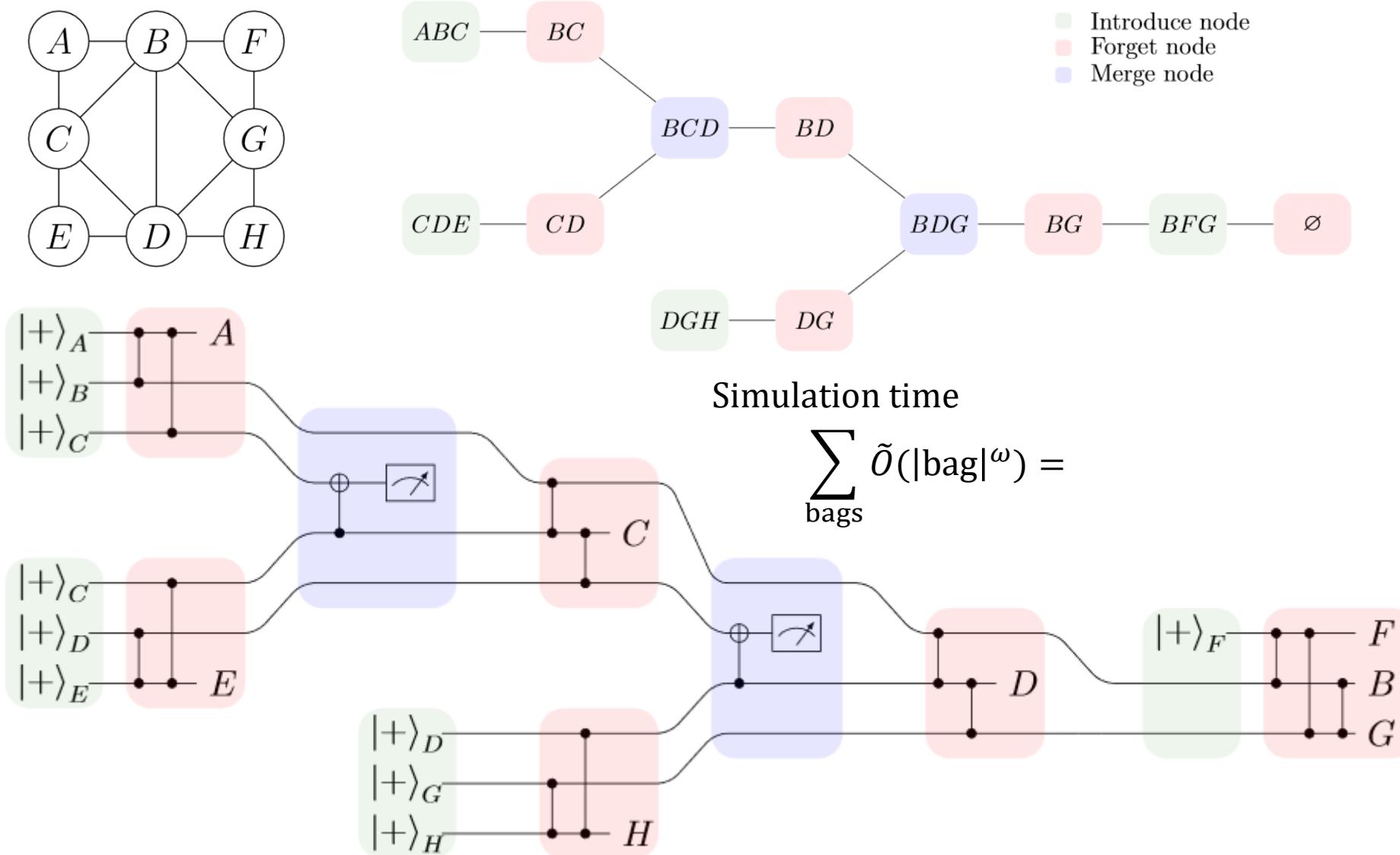
$$|G\rangle = \prod_{ab \in E(G)} CZ_{ab} |+\rangle^{\otimes n}$$

Tree decomposition \mapsto circuit

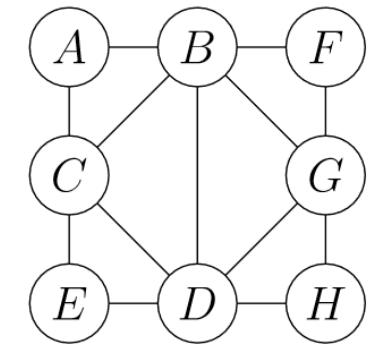
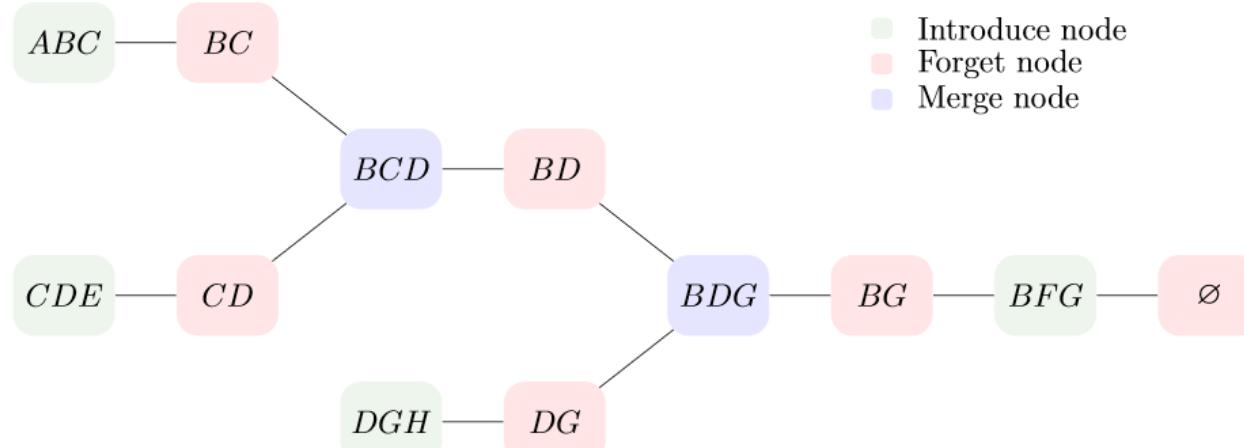
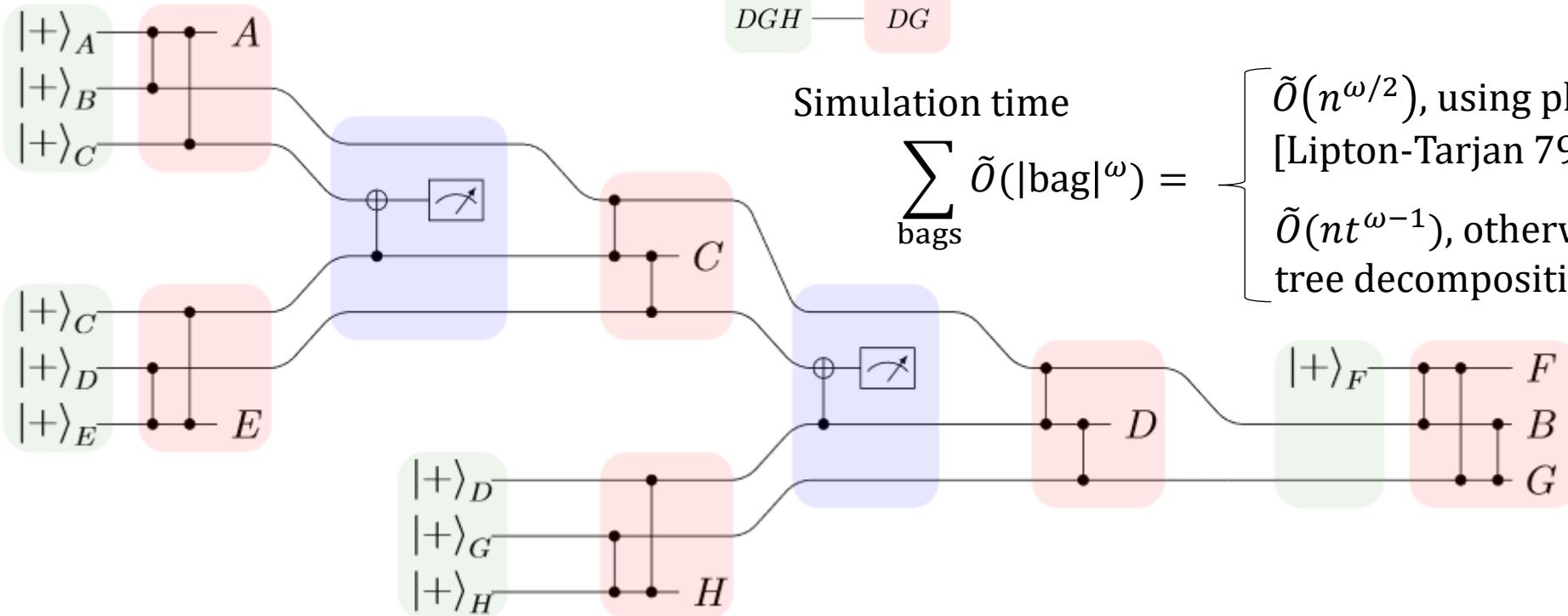


$$|G\rangle = \prod_{ab \in E(G)} CZ_{ab} |+\rangle^{\otimes n}$$

Tree decomposition \mapsto circuit



Tree decomposition \mapsto circuit



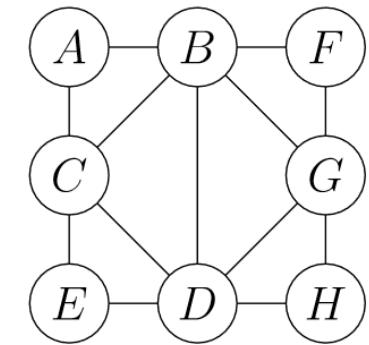
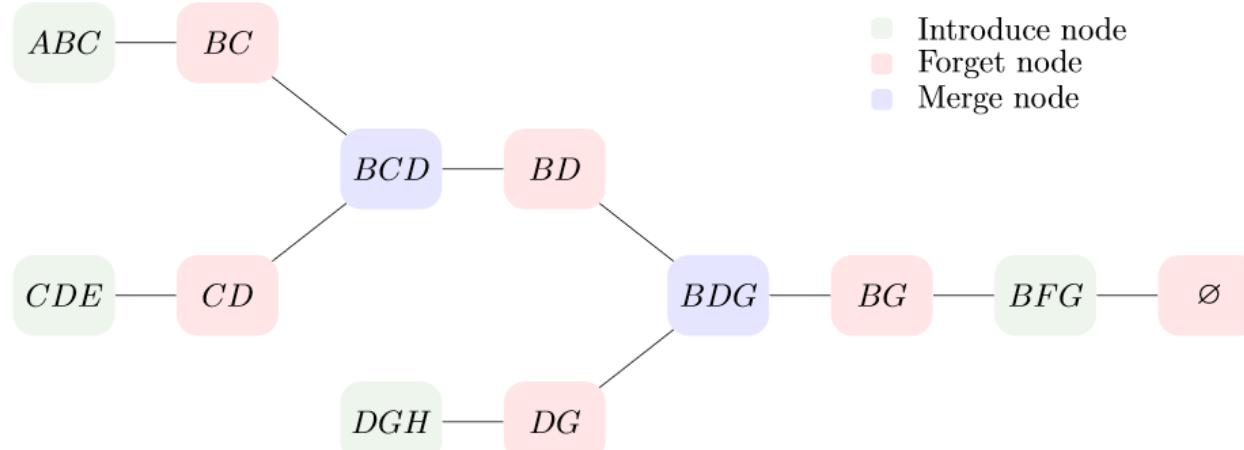
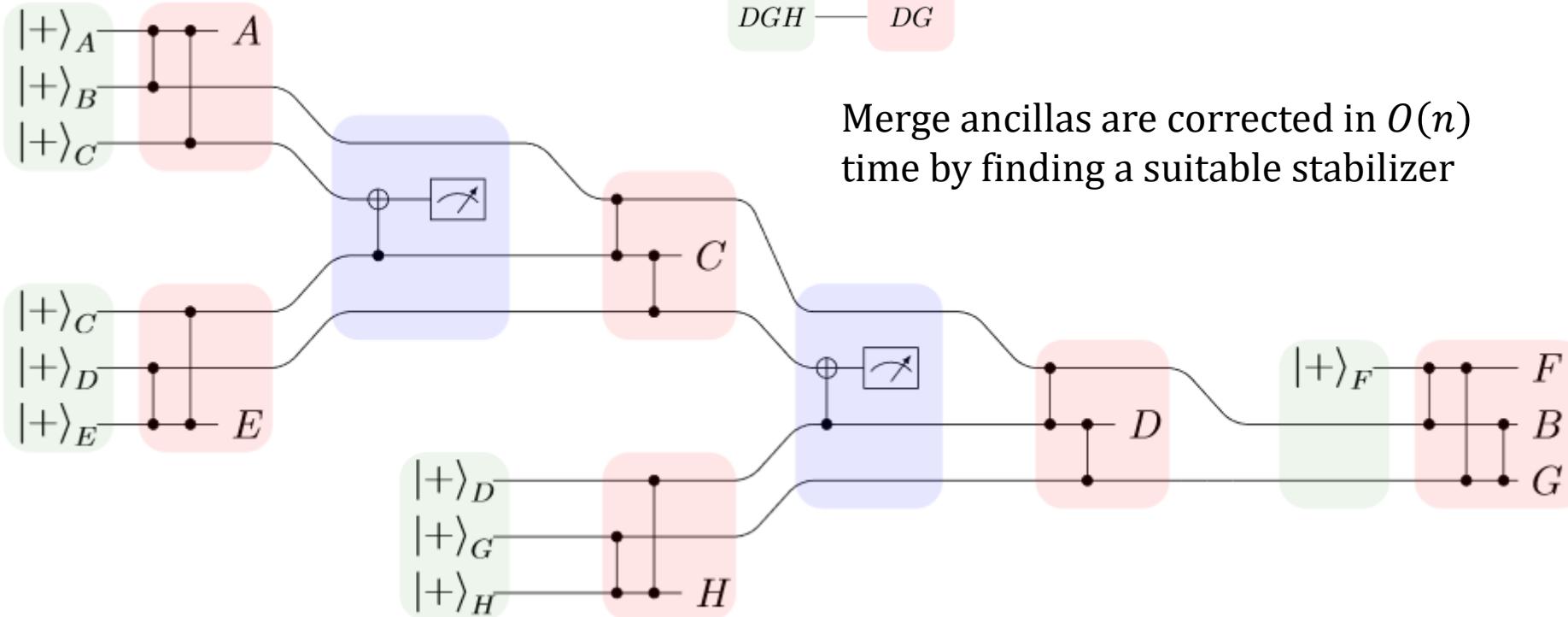
Simulation time

$$\sum_{\text{bags}} \tilde{O}(|\text{bag}|^\omega)$$

$\tilde{O}(n^{\omega/2})$, using planar separators
 [Lipton-Tarjan 79]

$\tilde{O}(nt^{\omega-1})$, otherwise, when given tree decomposition

Tree decomposition \mapsto circuit



Other results

Graph state simulation with postselection

Same runtime: $\tilde{O}(n^{\omega/2})$

Correction subroutine is equivalent to solving $Ax = b$ over \mathbb{F}_2 in time $\tilde{O}(n^{\omega/2})$ where A is the adjacency matrix of a planar graph. Extends results of [Alon-Yuster 10] to allow for singular A .

Other results

Graph state simulation with postselection

Same runtime: $\tilde{O}(n^{\omega/2})$

Correction subroutine is equivalent to solving $Ax = b$ over \mathbb{F}_2 in time $\tilde{O}(n^{\omega/2})$ where A is the adjacency matrix of a planar graph. Extends results of [Alon-Yuster 10] to allow for singular A .

Clifford tensor networks

Algorithm for sampling a nonzero element

Summary

Graph state simulation problem

Given G and $P_v \in \{X, Y, Z\}$ for each v , simulate a measurement on $|G\rangle$ in the P_v bases

Theorem

The graph state simulation problem can be solved classically in time $\tilde{O}(n^{\omega/2})$ for planar graphs

Theorem

If CZ gates of a Clifford circuit act only on edges of a planar graph, we can sample from the output distribution in time $\tilde{O}(n^{\omega/2}d^\omega)$

Open problem

Graph state simulation on sparse nonplanar graphs remains a candidate for quantum speedup