Quantum advantage for computations with limited space
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Quantum computations are studied for their potential to offer an advantage over regular classical computations.
The extent and provability of such advantage depend on the computational model selected. A simple example of a
computational model can be a game, such as CHSH game [I] (Bell’s inequality [2]). The best classical probability
of winning this game, %, can be improved to % with the use of a quantum computer. While this gap allows to
experimentally demonstrate quantumness, there is very little quantum computation involved, and Bell’s inequality
can be attributed to the property of quantum states rather than computations. A second model studies computations
with black boxes, including algorithms such as Deutsch-Jozsa [3], Bernstein—Vazirani [4], and Grover’s [5]). A practi-
cal experimental use of Grover’s search, agruably the most practical of these, is likely far in the future given a mere
quadratic speedup. A third computational model studies white box computations, and allows superpolynomial advan-
tage for solving problems such as Hamiltonian dynamics simulation [6Hg]. In this case, separations are not established
formally. A quantum computer capable of outperforming a classical computer will likely need to be large—about 70
qubits and 650,000 gates in some of the shortest known quantum circuits solving a computational problem that is
believed to be intractable for classical hardware [9]. Finally, a provable quantum advantage was established for the
parallel model of computation [TOHI5]. It remains to be seen whether this type of advantage can be demonstrated
experimentally with near-term devices due to the large number of qubits required.

Here we study a simple computational model that allows to both establish a provable separation between classical
and quantum computational models and validate it experimentally. Our model is designed to highlight the superiority
of quantum computational space, resulting in a different type of advantage compared to those examples highlighted
in the previous paragraph. A related space advantage should be possible to exploit to improve computations beyond
those explicitly discussed here.

Formally, we consider classical and quantum circuits where the input (also called primary input to distinguish
from the constant qubit called the computational space) is a read-only memory (input cannot be written on), and
the computational space is restricted to s bits. In the classical case, computations proceed by arbitrary s+1-input
s-output Boolean functions/gates g, where exactly one bit of the input to g is from the primary input, and all outputs
are computational bits. For s=1 this means 2-input 1-output Boolean gates, being the staple gate library for classical
computations. The closest analog to such transformations in the quantum world is the controlled-U gates, where the
unitary operation U is applied to the computational register and controlled by a primary input. We call this model
limited-space computation.

The set of functions uncomputable by 1-bit limited-space classical computations includes symmetric functions with
nontrivial Fourier spectra (equivalently, those that cannot be written as fixed polarity Reed-Muller expression with
degree 0, 1, and n terms only). This implies that most symmetric functions may not be computed classically in this
model. However, they can be computed by a quantum circuit with O(n?) entangling gates and 1 qubit of computational
space, as discussed later. Other than symmetric Boolean functions, polynomial-size 1-qubit limited-space quantum
computations include at least those functions in the NC? class, such as Boolean components of the integer addition,
integer multiplication, and matrix determinant [16], as well as all linear combinations f(z) & g(y) where f and g are
polynomial-size computable; most of these functions are uncomputable by 1-bit limited-space classical computations.

When the computational space is increased to 2 bits, the classical model can compute any Boolean function (e.g.,
by Disjunctive Normal Form), although circuit complexity may be high. Here, we focus on the case s=1 to maximize
the gap between classical and quantum computations.

With perfect quantum computers, we would be able to demonstrate that the quantum computer always succeeds at
computing those functions uncomputable by the classical 1-bit limited-space circuits. Unfortunately, current quantum
computers are noisy and sometimes fail. This failure is often modeled probabilistically. To demonstrate quantum
advantage using noisy quantum computers over (perfect) classical computers in an experiment, it would be fair to
arm classical computations with free access to randomness. Specifically, we allow the classical computer to randomly
select a limited-space circuit to run or, equivalently, replace Boolean gates g(x;, s) in it with Boolean gates g(x;, s,7),
where 7 is a random number. We furthermore allow the classical limited-space computer to evaluate functions with
probability p, which is equal to the normalized Hamming distance between truth vectors of the computable and
desired functions. The value p for classical computations is thus analogous to ASP (Algorithmic Success Probability)
in quantum computations. Computational machinery that achieves ASP above the maximal classical value p performs
a computation unreachable by classical means and is thereby super-classical. Here we demonstrate a selection of
experiments that achieve this.
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FIG. 1. True SLSB3 with 8 entangling gates, obtained using signal processing technique and local optimization. The gates
used are axial rotations Ry, , .}:0 by the angle 6 and their controlled versions.
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FIG. 2. Relative-phase SLSBn using 2n—1 entangling gates. The gates used are the controlled versions of the Clifford gate
HX, Pauli-Z gate, and the Hadamard gate H.

The simplest function not computable in the 1-bit limited-space classical model is SLSB3(z1, 22, x3) = x122PT2x3
@zix3. In general, SLSBn is defined as the value of the Second Least Significant Bit of the input weight |z|. The
maximal classical probability p of computing SLSB3 using limited-space computations is % =0.875, meaning the truth
vector distance to a computable function is 1. We developed two quantum circuits to compute SLSB3, one with 5
entangling gates and one with 8 entangling gates (Fig. 1f), achieved with the use of Quantum Signal Processing
(QSP). The quantum computer ASPs are 0.9429+0.0011 and 0.9280+0.0013, respectively. For 4 bits, the function
SLSB4 achieves the minimal among maximal classical values p= % =0.8125 across all symmetric Boolean functions.
We developed a quantum circuit with 7 entangling gates, that maps into a quantum circuit with 13 entangling
gates over the experiment, due to the requirement to use two SWAP gates. The measured ASP is 0.87434+0.0035. For
5 bits, the function SLSB5 is most difficult to approximate classically, with the threshold of % =(.71875; we achieved
quantum ASP of 0.8460+0.0053 by a quantum circuit with 9 entangling gates (21 in the experiment), For 6
bits, the most difficult function is SLSB6, featuring the threshold value g—i =0.671875; we implemented it with fidelity
0.798440.0047 over quantum circuit with 11 gates (29 in the experiment), In each of these experiments, we
beat the classical threshold, thus demonstrating a quantum advantage.

For arbitrary n, SLSBn as well as any symmetric Boolean function, can be computed using O(n?) entangling gates
by a quantum limited-space circuit, constructed using QSP. SLSBn may furthermore be computed by a specialized
circuit using 2n—1 gates (see , showing that QSP gives a loose upper bound. The classical probability p
of evaluating SLSBn correctly within the limited-space computational model approaches the theoretical minimum
of % exponentially fast, namely, p <1/24+0(n/ \/En) This presents an opportunity to demonstrate larger quantum
advantage with a higher number of qubits. Formal proofs of the above statements can be found in the full paper.

Our goal is the construction of a quantum circuit implementation of the n-bit Boolean function f(x), expressed
by an n+1-qubit unitary U : |z)[b) — €@ |2) [b@f(x)) for some real-valued function 6(x,b). In the I-qubit
limited-space model we may write U= )__|z) (x| ® U(x), where U(x) is the product of single-qubit gates, each
controlled by a single qubit of the input register |z). We show in the full paper that the simplest implementation
of U in which 6(z,b) is constant and U(x) = e?(® X /() is impossible. The closest we can get to such a phaseless
implementation is U(x) = (iX)f (#)which we call a true implementation. Any other case we regard as a relative phase
implementation. Note that both true and relative phase implementations faithfully compute f(z) upon measurement
in the computational basis. An advantage of true implementation comes from the ability to remove the phase entirely
through introducing a new ancilla qubit.

Our structured approach to computing symmetric Boolean functions f(z) makes use of QSP [8]. Suppose that
we only access the input bits with a unitary S= )" |z) (x| ® R, (¢.), where Rp(x) = cos(x/2)I —isin(x/2)P is a
single-qubit rotation for any Pauli operator P € {X,Y, Z}. Letting ¢, = A|x|—4 for real parameters 6 and A, it is clear
that we can implement S with n controlled-R,(A) gates and an R, (d) gate. QSP is a method to create U using the S
operation several (say, L) times, interspersed with single-qubit gates on the computational qubit. In the simplest case,
sufficient for our purposes, these additional single-qubit gates are Z-rotations R,(£). To be more concrete, suppose
we write U(z) = A(z)I+iB(x) X +iC(z)Y+iD(x)Z for real-valued functions A, B, C, and D. Provided that these
functions satisfy A%2+B?+C?4+D? =1 and have certain symmetries, QSP guarantees the existence of angles ¢; such
that U= R (&) Hle R, (Q)SRTZ (&) and gives an efficient method to find these angles [I7, [I8]. See the full paper
for more details.

To compute a symmetric function of n bits, we choose A(z) =1 when f(x)=0 and B(xz)=1 when f(z)=1. These
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FIG. 3. Ancilla qubit (Q12) excited state population for each input ROM state combination for the (a) SLSB3, (b)
SLSB4 (c) SLSB5 function and (d) SLSB6. The 5 and 8 entangling gate SLSB3 circuits achieve the ASP of 0.94294+0.0011
and 0.928040.0013, while the SLSB4 circuit achieves the ASP of 0.8743+0.0035, the SLSB5 circuit achieves the ASP of
0.846040.0053, and the SLSB6 circuit achieves the ASP of 0.798440.0047. Experimental error bars for each function are
smaller than the plot marker in most cases. The maximal classical ASP is illustrated with the red dotted lines. In addition,
the qubit layout for each function is displayed in the inset of each plot.

constraints are satisfiable for L =4n+1 uses of S (see the full paper). Since each instance of S uses n+1 gates, the
total gate-complexity of this approach is O(n?). For certain functions f, symmetries and circuit simplifications can
reduce this gate count. For instance, the QSP approach calculates true SLSB3 =MAJ3 using 9 entangling gates, and
a simple gate merging simplification reduces their number to 8, a). MAJn, the majority function, evaluates
to one iff more than half the inputs equal one. The true 5-bit majority MAJ5 implementation by QSP takes 25
entangling gates. For more general Boolean functions that lack the symmetry present in MAJn, gate counts are
larger. For instance, an unoptimized QSP circuit for the true implementation of SLSB4 function, which operates over
fewer bits than MAJ5, takes 52 entangling gates. In contrast, a relative-phase implementation constructed directly
has only 7 entangling gates,

Our experimental results are summarized in We highlight that all experimental data points stay outside
the classical band indicated by the red dotted lines; this means that quantum advantage was achieved not just on
average, but for any input. More data is available in the full manuscript.
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