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Summary

• We have recently demonstrated record-breaking electron beam charge with the acceleration of a > 0.7 uC
electron beam from a self-modulated LWFA driven by the OMEGA EP laser

• Our new “achromatic flying focus” concept, a method of spatiotemporally controlling laser propagation, 
shows promise as a means to circumvent the fundamental limitations of LWFA and offers a path to a single-
stage 500 GeV LWFA

The Laboratory for Laser Energetics (LLE) is exploring novel means to advance 
the field and application of laser wakefield accelerators (LWFA)
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Why Plasma Accelerators?
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Electron beams from conventional, radio-frequency accelerators are key 
scientific tools

Why Study Plasma Accelerators?

____________
http://www-group.slac.stanford.edu/com/images/gallery/general-
lab.htm

SLAC

3 km
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Advanced x-ray sources also rely on kilometer-scale electron accelerators
Why Study Plasma Accelerators?

____________
http://www-group.slac.stanford.edu/com/images/gallery/general-
lab.htm

SLAC

1 km
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Can we develop a high-performing, compact electron and x-ray source?
Why Study Plasma Accelerators?

____________
http://www-group.slac.stanford.edu/com/images/gallery/general-
lab.htm

SLAC

SLAC
Gradient: 10 to 20 MV/m

Plasma
Gradient: 40+ GV/m
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Why Study Plasma Accelerators?

____________
rf: radio frequency

http://www-group.slac.stanford.edu/com/images/gallery/general-
lab.htm

SLAC

Swap 10 to 20 m 
of rf cavities for 4 

mm of plasma 

SLAC
Gradient: 10 to 20 MV/m

Plasma
Gradient: 40+ GV/m

Dephasingless LWFA could 
replace the entire SLAC linac

with 25 cm of plasma accelerator

Can we put SLAC in your hand?
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Physical Picture of LWFA
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LWFA is somewhat analogous to wakeboarding

Wake in water
meter scale

Wake in plasma
micron scale

https://www.youtube.com/watch?v=PHGiexy10ew

Wakefield
Height versus Density

modulations

Wake driver
Boat versus Laser

Physical Picture
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LWFA in the Blowout Regime*
Physical Picture

Intense, fs-scale 
laser propagates 
through neutral 

gas or underdense
plasma

Ponderomotive force of laser 
pushes electrons out and 

around body of laser pulse

Coulomb force of resulting ion 
column draws electrons back 

towards laser axis where they can 
overshoot and set up a plasma wake

γ
Electrons that become 

trapped in back of wake 
can be accelerated

Ez

____________
* W. Lu et al., Phys. Rev. Spec. Top. – Accel. Beams 10, 061301 (2007).



12

LWFA in the Blowout Regime*
Physical Picture

Intense, fs-scale 
laser propagates 
through neutral 

gas or underdense
plasma

Ponderomotive force of laser 
pushes electrons out and 

around body of laser pulse

Coulomb force of resulting ion 
column draws electrons back 

towards laser axis where they can 
overshoot and set up a plasma wake

Electrons that become 
trapped in back of wake 

can be accelerated

____________
* W. Lu et al., Phys. Rev. Spec. Top. – Accel. Beams 10, 061301 (2007).

Accelerating electrons execute 
betatron oscillations under 

influence of ion column

r0
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Project 1:

High-Charge Electron Beams from Self-Modulated 
LWFA (SMLWFA)
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The high-energy electrons from LWFAs can provide compact sources for 
conversion to photons and positrons

Ps-scale, kJ-class lasers can drive self-modulated LWFA, which can produce sizably more charge

Challenge: High-Charge Beams

Positron SourcesHard, Bright X Ray Sources

Nphotons ∝ Ne

Nphotons ∝ Ne

Nphotons ∝ Ne

LWFA experiments with pC-class electron 
beams struggle to make enough positrons
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In SMLWFA, a laser pulse with c𝝉𝝉 > 𝝀𝝀p enters a plasma and becomes modulated at 𝝀𝝀p via the 
Raman forward scattering* and/or self-modulation** instabilities

Physical Picture

Picosecond  laser

Neutral Gas

Gas jet ____________
* A. Modena et al., Nature 377, 606 (1995).

**
N. E. Andreev et al., Pisma Zh. Eksp. Teor. Fiz. 55, 551 (1992). 
T. M. Antonsen and P. Mora, Phys. Rev. Lett. 69, 2204 (1992). 
P. Sprangle et al., Phys. Rev. Lett. 69, 2200 (1992).

C. Joshi et al., Phys. Rev. Lett. 47, 1285 (1981).
E. Esarey et al., Phys. Rev. Lett. 72, 2887 (1994). 
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Modulations lead to a train of laser micropulses coherently driving plasma waves whose 
longitudinal electric fields trap and accelerate electrons to relativistic energies

Electrons

Plasma

Physical Picture

Gas jet

λp
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SMLWFA experiments were performed on OMEGA EP

1054 nm, ~700 fs,
10 to 95 J,

a0 ~1.3 to 6.7

f/2 OAP 
apodized to

f/5 to f/10

____________
EPPS: electron–positron–proton spectrometer
OAP: off-axis parabola

M5 gas jet
𝚽𝚽nozzle = 2 to 10 mm

a0 =
eE0

mcω0
∝ I0 W/cm2

I0 = Peak laser intensity 
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SMLWFA experiments were performed on OMEGA EP

1054 nm, ~700 fs,
10 to 95 J,

a0 ~1.3 to 6.7

f/2 OAP 
apodized to

f/5 to f/10

____________
EPPS: electron–positron–proton spectrometer
OAP: off-axis parabola

M5 gas jet
𝚽𝚽nozzle = 2 to 10 mm

a0 ~ 2

I0 ~ 8 x 1018 W/cm2
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Electron beams with divergences as low as 32 x 39 mrad were measured, which 
is significantly reduced from the next best SMLWFA divergence reported

Highest-Charge 
• a0 = 6.6
• Φnozzle = 6 mm
• ne = 7.5 x 1018 cm-3

• R50%q = 59.4 mrad

Lowest-Divergence
• a0 = 4.4
• Φnozzle = 10 mm
• ne = 1.1 x 1019 cm-3

• Pointed 8 mrad
• R50%q = 53.9 mrad 3.5 x 105

7.0 x 105

1.8 x 105

5.3 x 105

8.8 x 105

El
ec

tro
ns

/m
ra

d2

1.1 x 106

6.1 x 105

1.8 x 105
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Total charge in the electron beams scales approximately linearly with a0

Same trend was observed for:
• 6-mm-dia. nozzle at ne = 1, 2, and 3 x 1019 cm-3

• 4-mm-dia. nozzle at ne = 1 x 1019 cm-3

• 10-mm-dia. nozzle at ne = 0.2, 0.5, 1, and 3.5 x 1019 cm-3

Φnozzle = 6 mm
ne = 5 x 1018 cm-3
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The ideal regime for producing high-charge electron beams for this SMLWFA-
based LPA is for ne ~ 1 x 1019 cm-3 or less. 

Electron beams with charges up to 707 ± 429/224 nC were measured

Φnozzle = 6 mm Φnozzle = 10 mm
a0 ≥ 5
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• The weighted average electron energy of the representative electron 
spectrum from this experiment is 17.9 MeV

• Using this energy, the 707 nC electron beam corresponds to a 
conversion efficiency from laser energy to electron energy of 11%

Laser-to-electron conversion efficiencies up to 11% were observed
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Collaborative work between LLE, Oxford (Gregori), and RAL (Bingham) is 
exploring positron production using these high-charge electron beams

Current Experiments

Calculated positron yields using a 200 nC electron beams in a 15 mm 
Pb converter peak at 109 e+/MeV* 

____________
* Figure and calculation courtesy C. Arrowsmith
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• Previous Betatron Results from Titan:
－ 109 photons/eV/Sr @ 6 keV from a 10 nC beam
－ Ecrit up to 20 keV

• Predicted results from OMEGA EP
－ Similar energies, source size, and duration
－ ~7 x 1010 photons/eV/Sr owing to 70x greater 

charge

We are collaborating with LLNL (Albert) and Oxford (Gregori) to measure the 
betatron radiation produced by the high-charge electron beam

Bremsstrahlung and Inverse Compton Scattering sources will also be investigated

Current Experiments
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We are also collaborating with LLNL (Lemos) to radiograph the SMLWFA to verify 
two acceleration mechanisms

Current Experiments

____________
* Simulations and figure curtesy N. Lemos

** N. Lemos et al., J. Plasma Physics 78 327 (2012)

* **
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Project 2: 

Achromatic Flying Focus towards a Single-Stage 500 
GeV LWFA
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The dephasing of the accelerating electrons relative to the drive laser limits the 
maximum energy gain of the electrons in a conventional LWFA

The production of an intensity peak that can move at the vacuum speed of light 
in plasma could eliminate dephasing in LWFA

Challenge: Dephasing
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We are studying various methods of spatiotemporal pulse shaping (flying focus), 
where we structure a laser pulse with advantageous space-time correlations that 
are tailored to a particular application

Modern techniques for spatiotemporal pulse shaping offer cylindrical 
symmetry, velocity control, and extended focal ranges

____________
* A. Sainte-Marie et al., Optica (2018) 
D. Froula et al., Nat. Photonics (2018)
** T. Simpson et al., Submitted(2020)

† Z. Li et al., Nat. Sci. Reports (2020)
‡ J. Palastro et al., Phys. Rev. Lett. (2020)

C. Caizergues et al., Nat. Photonics (2020)
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We are studying various methods of spatiotemporal pulse shaping (flying focus), 
where we structure a laser pulse with advantageous space-time correlations that 
are tailored to a particular application

____________
* A. Sainte-Marie et al., Optica (2018) 
D. Froula et al., Nat. Photonics (2018)
** T. Simpson et al., Submitted(2020)

† Z. Li et al., Nat. Sci. Reports (2020)
‡ J. Palastro et al., Phys. Rev. Lett. (2020)

C. Caizergues et al., Nat. Photonics (2020)Our new concept—an achromatic flying focus (AFF)—could 
enable a new regime of LWFA
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The AFF uses spherical aberration to create an extended focal region and 
a radial echelon to control the time at which rings of power reach their 
respective foci along the extended focal region

Axiparabola**

fs laser

Radial Echelon*

____________
* J. P. Palastro et al., Phys. Rev. Lett. 

** S. Smartsev et al. Opt. Lett. 44, 3414 (2019) 
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The AFF uses spherical aberration to create an extended focal region and 
a radial echelon to control the time at which rings of power reach their 
respective foci along the extended focal region

Axiparabola**

Radial Echelon*

____________
* J. P. Palastro et al., Phys. Rev. Lett. 

** S. Smartsev et al. Opt. Lett. 44, 3414 (2019) 
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The AFF uses spherical aberration to create an extended focal region and 
a radial echelon to control the time at which rings of power reach their 
respective foci along the extended focal region

Axiparabola**

Radial Echelon*

____________
* J. P. Palastro et al., Phys. Rev. Lett. 

** S. Smartsev et al. Opt. Lett. 44, 3414 (2019) 
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The AFF uses spherical aberration to create an extended focal region and 
a radial echelon to control the time at which rings of power reach their 
respective foci along the extended focal region

Axiparabola**

Radial Echelon*

____________
* J. P. Palastro et al., Phys. Rev. Lett. 

** S. Smartsev et al. Opt. Lett. 44, 3414 (2019) 
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The AFF uses spherical aberration to create an extended focal region and 
a radial echelon to control the time at which rings of power reach their 
respective foci along the extended focal region

For velocities near c, an axiparabola and a radial echelon 
can deliver ultrashort laser pulses to the far field

____________
* J. P. Palastro et al., Phys. Rev. Lett. 

** S. Smartsev et al. Opt. Lett. 44, 3414 (2019) 

Axiparabola**

Radial Echelon*
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MTW-OPAL
(7.5 J, 15 fs)

EP-OPAL 
(500 J, 15 fs)

Wave propagation simulations demonstrate that the axiparabola and echelon can 
deliver a short pulse with a small spot over 10 cm

Emerging short-pulse laser systems provide the capability to produce 
relativistic intensities that propagate over centimeters to meters
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LLE has developed an in-house capability to fabricate radial echelons using 
electron-beam evaporation

White light interferometry measurements have ensured that the 
manufactured echelons meet the specs for upcoming experiments
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No echelon

Echelon

Planned experiments will demonstrate velocity control using the axiparabola-
echelon pair

The spectral interference of a reference pulse with the imaged far-field of the 
axiparabola-echelon provides the relative delay and velocity
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• Ionization Waves
－ J. P. Palastro et al., Phys. Rev. A 97, 033835 (2018) 
－ D. Turnbull et al., Phys. Rev. Lett. 120, 225001 (2018) 

• Photon Accelerators
－ A. Howard et al., Phys. Rev. Lett. 123, 124801 (2019)

• Strong-field QED Phenomena in Compton Scattering
－ A. Di Piazza, submitted

• Attosecond Lighthouses

• Fermi Acceleration
－ D. Ramsey, in preparation

The chromatic and achromatic flying focus, as well as other spatiotemporal 
control methods, can be applied to several applications beyond LWFA

Extending Beyond LWFA

• Raman Amplification
－ D. Turnbull et al., Phys. Rev. Lett. 120, 024801 (2018)

• Cherenkov Radiation

• Terahertz Radiation

• Direct Vacuum Electron Acceleration
－ D. Ramsey, accepted Phys. Rev. E
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Summary/Conclusions

• We have recently demonstrated record-breaking electron beam charge with the acceleration of a > 0.7 uC
electron beam from a self-modulated LWFA driven by the OMEGA EP laser

• Our new “achromatic flying focus” concept, a method of spatiotemporally controlling laser propagation, 
shows promise as a means to circumvent the fundamental limitations of LWFA and offers a path to a single-
stage 500 GeV LWFA

The LLE is exploring novel means to advance the field and application of LWFA

We are looking to add to our team!  
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Questions?
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