Sprecher
Beschreibung
Alkaline vents (AV) are hypothesized to have been a setting for the emergence of life, by creating strong gradients across inorganic membranes within chimney structures. In the past, 3-dimensional chimney structures were formed under laboratory conditions, however, no in situ visualisation or testing of the gradients was possible.
We develop a quasi-2-dimensional microfluidic model of alkaline vents that allows spatio-temporal visualisation of mineral precipitation in low volume experiments. Upon injection of an alkaline fluid into an acidic, iron-rich solution, we observe a diverse set of precipitation morphologies, mainly controlled by flow-rate and ion-concentration. Using microscope imaging and pH dependent dyes, we show that finger-like precipitates can facilitate formation and maintenance of microscale pH gradients and accumulation of dispersed particles in confined geometries.
Our findings establish a model to investigate the potential of gradients across a semi-permeable boundary for early compartmentalisation, accumulation and chemical reactions at the origins of life.