Aug 25 – 27, 2021
Europe/Berlin timezone

Chemistry mimicking life: From hydrothermal vent precipitates to self-propulsion

Aug 27, 2021, 3:25 PM


Due to unstable situation with Covid-19 the event will be held online!


Oliver Steinbock (Florida State University)


We are often surprised, if not puzzled, by inorganic reactions forming life-like, smoothly curved structures. Moreover, these abiotic structures can grow under conditions that likely existed on the early Earth four billion years ago. If we could go back in time to this period, would we be able to draw a clear line between abiotic complexity and the earliest living systems? Did life perhaps utilize inorganic self-organization to secure spatial confinement, catalytic abilities, and free energy, thus, blurring the line between life and everything else? In the context of these questions, I will introduce two experimental systems—chemical gardens and biomorphs—and discuss some of their features relating to life-like shapes derived from nonlinear reaction-transport processes, prebiotic reactions studied in microfluidic devices, and catalysis-driven self-motion.

Q. Wang, L. M. Barge, and O. Steinbock, "Microfluidic Production of Pyrophosphate Catalyzed by Mineral Membranes with Steep pH Gradients", Chem. Eur. J. 25, 4732-4739, 2019.
P. Knoll and O. Steinbock, "Nanodot-to-Rod Transition and Particle Attachment in Self-Organized Polycrystalline Aggregates", Cryst. Growth Des. 19, 4218-4223, 2019.

Presentation materials

There are no materials yet.