Zum Hauptinhalt springen
5.–10. Mai 2019
MedILS
Europe/Berlin Zeitzone

First demonstration of a hybrid laser-electron-beam driven plasma wakefield accelerator

09.05.2019, 12:15
15m
Main Hall (MedILS)

Main Hall

MedILS

Sprecher

T. Kurz (Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics)

Beschreibung

Plasma based electron acceleration is widely considered as a promising concept for a compact electron accelerator with broad range of future applications from high energy particle colliders to photon science. These accelerators can be powered by either ultra-intense laser beams (LWFA) or relativistic high-current particle beams (PWFA).
Here, we report on a novel approach to combine both schemes in a truly compact experimental setup. In our “LWFA + PWFA” hybrid accelerator, the electron beam generated by a LWFA stage drives a subsequent PWFA stage where a witness beam is trapped and accelerated. This strategy aims to combine the unique features of both plasma acceleration techniques, the LWFA stage provides with a compact source of high-current electron beams required as PWFA drivers, while the PWFA stage acts as an energy and brightness transformer for the LWFA output1.
In this work, we show the first experimental evidence of accelerating a distinct witness bunch in a LWFA-driven PWFA (LPWFA) within only about one millimeter acceleration distance. In the self-ionizing case, we observe witness energies of around 50 MeV. By utilizing a counter-propagating pre-ionization laser, the interaction with the plasma becomes stronger, increasing the final energies to around 120 MeV. Thus, yielding a field gradient of (46±11) GeV/m which is comparable to what has been shown at large scale facilities2.

References:

  1. A. Martinez de la Ossa et al., “Hybrid LWFA | PWFA Staging as a Beam Energy and Brightness Transformer: Conceptual Design and Simulations”, Phil. Trans. R. Soc. A. Accepted for publication. https://arxiv.org/abs/1903.04640
  2. Corde, S. et al., Nat. Commun. 7, 11898 (2016).
Working group Laser-driven electron acceleration

Autor

T. Kurz (Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics)

Co-Autoren

T. Heinemann (Deutsches Elektronen-Synchrotron DESY; Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde) S. Schoebel J. P. Couperus Cabadağ (Helmholtz-Zentrum Dresden -Rossendorf, Institute of Radiation Physics) O. Kononenko (LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris) Y.-Y. Chang (Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics) M. Bussmann (Helmholtz-Zentrum Dresden-Rossendorf) S. Corde (LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris) A. Debus (Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics) H. Ding (LMU Munich) A. Döpp (Ludwig-Maximilians-Universität München; Max Planck Institut für Quantenoptik) M. F. Gilljohann (Ludwig-Maximilians-Universität München; Max Planck Institut für Quantenoptik) B. Hidding (Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde; Cockcroft Institute, Sci-Tech Daresbury) S. Karsch (Ludwig-Maximilians-Universität München; Max Planck Institut für Quantenoptik) Herr A. Köhler (HZDR) R. Pausch (Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics) Herr O. Zarini (HZDR) U. Schramm (HZDR) Dr. A. Martinez de la Ossa (Deutsches Elektronen-Synchrotron DESY) A. Irman (Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics)

Präsentationsmaterialien

Es gibt derzeit keine Materialien.